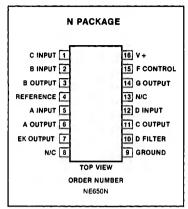
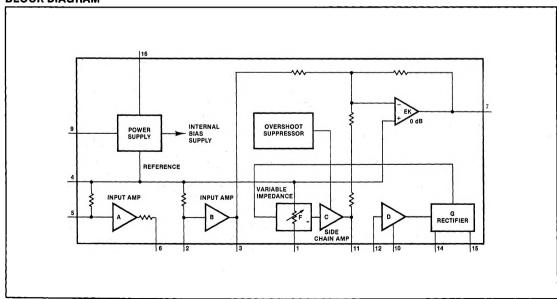
DOLBY B TYPE NOISE REDUCTION CIRCUIT


DESCRIPTION

The NE650 is a monolithic audio noise reduction circuit designed for use in Dolby* B Type noise reduction systems. The NE650 is used to reduce the level of background noise introduced during recording and playback of audio signals on magnetic tape. The NE650 features excellent dynamic characteristics over a wide range of operating conditions and is pin compatible with NE645/646. This circuit is available only to licensees of Dolby Laboratories Licensing Corp., San Francisco.

NOTE

*T.M. Dolby Laboratories Licensing Corporation.

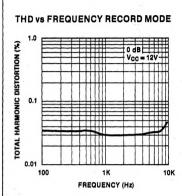

PIN CONFIGURATION

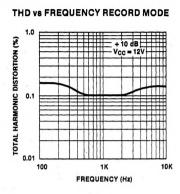
ABSOLUTE MAXIMUM RATINGS

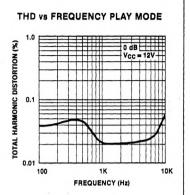
PARAMETER	RATING	UNIT	
Supply voltage	24	V	
Temperature range			
Operating	0 to + 70	°C	
Storage	- 65 to + 150	°C	
Lead temperature (soldering 60sec)	+ 300	°C	

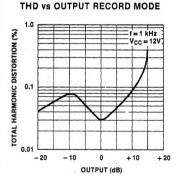
BLOCK DIAGRAM

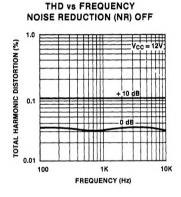
DC ELECTRICAL CHARACTERISTICS V_{CC} = 12V, f = 20Hz to 20kHz.

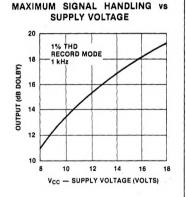

All levels referenced to 580mVrms (0dB) at pin 3, T_A = +25 °C unless otherwise noted.

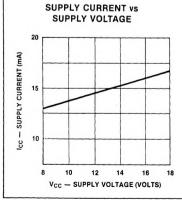

DARAMETER	TEST CONDITIONS	NE650			
PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Supply voltage range		8		20	٧
Supply current, I _{CC}	Electronic switching on		16	24	mA
Voltage gain (pins 5-3)	f = 1kHz (pins 6 and 2 connected)	25.5	26	26.5	dB
Voltage gain (pins 3-7)	f = kHz, 0dB at pin 3, noise reduction out	- 0.5	0	+ 0.5	dB
Voltage gain (pins 2-3)	f=1kHz				dB
Distortion THD; 2nd and 3rd harmonic	f = 20Hz to 10kHz, 0dB f = 20Hz to 10kHz, + 10dB			0.1 0.3	% %
Signal handling	1% distortion at 1kHz	+ 12	+ 15		dB
Signal-to-noise ratio*	Record mode Playback mode	68 78	72 82		dB dB
Back-to-back frequency response	Using typical record mode response	}	± 0.5		dB
Record mode frequency response (at pin 7) referenced to encode monitor point (pin 3)	f = 1.4kHz 0dB - 20dB - 30dB	- 0.5 - 16.1 - 23.5	0 15.6 22.5	+ 0.5 - 15.1 - 21.5	dB dB dB
	f = 5kHz 0dB - 20dB - 30dB - 40dB	- 0.7 - 17.3 - 22.3 - 30.2	+ 0.3 - 16.8 - 21.8 - 29.7	+ 1.3 - 16.3 - 21.3 - 29.2	dB dB dB
	f = 20kHz 0dB - 20dB - 30dB	- 0.3 - 18.3 - 24.5	+ 0.7 - 17.3 - 23.5	+ 1.7 - 16.3 - 22.5	dB dB dB
Input resistance	Pin 5 Pin 2	35 3.1	50 4.2	65 5.3	kΩ kΩ
Output resistance	Pin 6 Pin 3 Pin 7	Pin 3 80 120		3.1 120 120	kΩ Ω Ω
Back-to-back frequency response shift Versus T _A Versus V _{CC}	0°C to - 70°C 8 to 20V		± 0.4 ± 0.4		dB dB


^{*}All noise levels are measured CCIR/ARM weighted using a 10K source with respect to Dolby level. See Dolby Laboratories Bulletin 19.


DOLBY B TYPE NOISE REDUCTION CIRCUIT


PERFORMANCE CHARACTERISTICS





DOLBY B TYPE NOISE REDUCTION CIRCUIT


DOLBY ENCODER Output for constant level input (single tone frequency response)

Frequency (kHz)	input Level (dB)								
	0 (Dolby Level)	-5	-10	-15	-20	-25	-30	-35	-40
0.1	0	0.1	0	0.1	Ō	0	0	0	0
0.14	0	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.1
0.2	0	0.3	0.4	0.5	0.5	0.6	0.6	0.5	0.5
0.3	0	0.3	0.6	1.1	1.3	1.3	1.3	1.3	1.3
0.4					2.0	2.1	2.2	2.3	2.1
0.5	0	0.3	0.8	1.8	2.6	2.9	2.9	3.0	2.9
0.6						_3.6	3.7	3.8	3.7
0.7	0	0.4	0.9	2.1	3.5	4.3	4.4	4.5	4.4
0.8						4.8	5.0	5.3	5.1
0.9							5.6	5.8	5.6
1.0	0	0.4	1.0	2.3	4.2	5.7	6.1	6.3	6.2
1.2							6.9	7.1	7.1
1.4	0	0.3	0.9	2.3	4.4	6.6	7.5	7.7	_ 7.7
2.0	0.1	0.4	0.9	2.2	4.3	7.0	8.5	8.9	8.9
3.0	0.2	0.6	0.9	1.9	3.9	6.6	8.8	9.7	9.7
5.0	0.3	0.6	1.0	1.7	3.2	5.4	8.2	10.0	10.3
7.0	0.3	0.6	1.0	1.7	2.8	4.7	7.3	9.7	10.4
10.0	0.4	0.7	1.1	1.7	2.6	4.2	6.5	9.1	10.4
14.0	0.5	0.8	1.1	1.8	2.7	4.4	6.5	8.7	10.3
20.0	0.7	0.7	1.2	1.9	2.7	4.4	6.5	8.7	10.3

NOTE

The figures given in this table are the average response of many of Dolby Laboratories' professional encoders, and are not intended to be taken as required consumer equipment performance characteristics. Thus, no inference should be drawn on the tolerances which licensees must retain in consumer equipment. The figures can, however, be used to plot typical characteristics.

TEST CIRCUIT NE650

