
Signetics

Linear Products

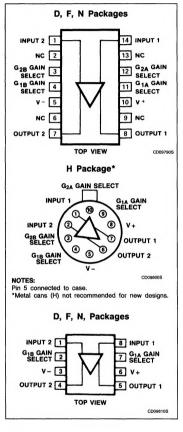
DESCRIPTION

The NE/SE592 is a monolithic, twostage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a highpass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

EQUIVALENT CIRCUIT

NE/SE592 Video Amplifier

Product Specification


FEATURES

- 120MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATIONS

NE/SE592

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to +70°C	NE592N14
14-Pin Cerdip	0 to +70°C	NE592F14
14-Pin Cerdip	-55°C to +125°C	SE592F14
14-Pin SO	0 to +70°C	NE592D14
8-Pin Plastic Dip	0 to +70°C	NE592N8
8-Pin Cerdip	-55°C to +125°C	SE592F8
8-Pin SO	0 to +70°C	NE592D8
10-Lead Metal Can	0 to +70°C	NE592H
10-Lead Metal Can	-55°C to +125°C	SE592H

NOTE:

Also N8, N14, D8 and D14 package parts available in "High" gain version by adding "H" before package designation, as: NE592HD8.

	ABSOLUTE	MAXIMUM	RATINGS	$T_{A} = +25^{\circ}C_{1}$	unless	otherwise	specified.
--	----------	---------	---------	----------------------------	--------	-----------	------------

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	V _{CC} Supply voltage		v
V _{IN}	VIN Differential input voltage		v
V _{CM}	Common-mode input voltage	±6	v
Ιουτ	Output current	10	mA
T _A	Operating temperature range SE592 NE592	-55 to +125 0 to +70	ပံ့
T _{STG} Storage temperature range		-65 to +150	°C
PD	Power dissipation	500	mW

NE/SE592

DC ELECTRICAL CHARACTERISTICS $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL PARAMETER			NE592			SE592			
	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT	
Avol	Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2, 4}	R _L = 2kΩ, V _{OUT} = 3V _{P.P}	250 80	400 100	600 120	300 90	400 100	500 110	V/V V/V
	High gain part		400	500	600				V/V
R _{IN}	Input resistance Gain 1 ¹ Gain 2 ^{2, 4}		10	4.0 30		20	4.0 30		kΩ kΩ
CIN	Input capacitance ²	Gain 2 ⁴		2.0			2.0		pF
los	Input offset current			0.4	5.0		0.4	3.0	μA
IBIAS	Input bias current			9.0	30		9.0	20	μA
V _{NOISE}	Input noise voltage	BW 1kHz to 10MHz		12			12		μVRMS
VIN	Input voltage range		± 1.0			± 1.0			v
CMRR	Common-mode rejection ratio Gain 2 ⁴ Gain 2 ⁴	V _{CM} ± 1V, f < 100kHz V _{CM} ± 1V, f = 5MHz	60	86 60		60	86 60		dB dB
PSRR	Supply voltage rejection ratio Gain 2 ⁴	$\Delta V_{S} = \pm 0.5 V$	50	70		50	70		dB
V _{OS}	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	R _L = ∞ R _L = ∞ R _L = ∞		0.35	1.5 1.5 0.75		0.35	1.5 1.0 0.75	v v v
V _{CM}	Output common-mode voltage	R _L = ∞	2.4	2.9	3.4	2.4	2.9	3.4	٧
Vout	Output voltage swing differential	$R_L = 2k\Omega$	3.0	4.0		3.0	4.0		۷
ROUT	Output resistance			20			20		Ω
lcc	Power supply current	R _L = ∞		18	24		18	24	mA

NOTES:

1. Gain select Pins $G_{1\text{A}}$ and $G_{1\text{B}}$ connected together.

2. Gain select Pins G_{2A} and G_{2B} connected together.

3. All gain select pins open.

4. Applies to 10- and 14-pin versions only.

NE/SE592

DC ELECTRICAL CHARACTERISTICS $V_{SS} = \pm 6V$, $V_{CM} = 0$, $0^{\circ}C \leq T_A \leq 70^{\circ}C$ for NE592; $-55^{\circ}C \leq T_A \leq 125^{\circ}C$ for SE592, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER		NE592			SE592			1
		TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2, 4}	R _L = 2kΩ, V _{OUT} = 3V _{P-P}	250 80		600 120	200 80		600 120	V/V V/V
	High gain part		400	500	600				V/V
R _{iN}	Input resistance Gain 2 ^{2, 4}		8.0			8.0			kΩ
los	Input offset current				6.0			5.0	μA
IBIAS	Input bias current				40			40	μA
VIN	Input voltage range		± 1.0			± 1.0			٧
CMRR	Common-mode rejection ratio Gain 2 ⁴	V _{CM} ± 1V, f < 100kHz	50			50			dB
PSRR	Supply voltage rejection ratio Gain 2 ⁴	$\Delta V_{S} = \pm 0.5 V$	50			50			dB
V _{OS}	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	R⊾ = ∞ R∟ = ∞ R∟ = ∞			1.5 1.5 1.0			1.5 1.2 1.0	v v v
VOUT	Output voltage swing differential	R _L = 2kΩ	2.8			2.5			v
Icc	Power supply current	$R_L = \infty$			27			27	mA

NOTES:

1. Gain select Pins G1A and G1B connected together.

2. Gain select Pins G2A and G2B connected together.

3. All gain select pins open.

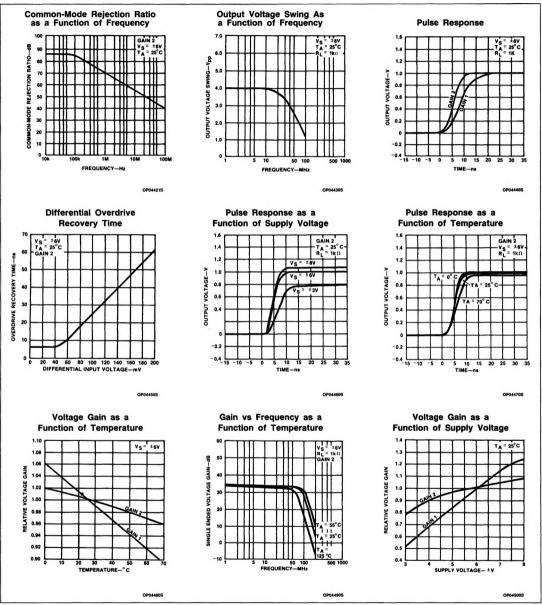
4. Applies to 14-pin version only.

AC ELECTRICAL CHARACTERISTICS $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL		TEST CONDITIONS	NE592			SE592			
	PARAMETER		Min	Тур	Max	Min	Тур	Max	UNIT
BW	Bandwidth Gain 1 ¹ Gain 2 ^{2, 4}			40 90			40 90		MHz MHz
tR	Rise time Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} = 1V _{P-P}		10.5 4.5	12		10.5 4.5	10	ns ns
t _{PD}	Propagation delay Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} = 1V _{P-P}		7.5 6.0	10		7.5 6.0	10	ns ns

NOTES:

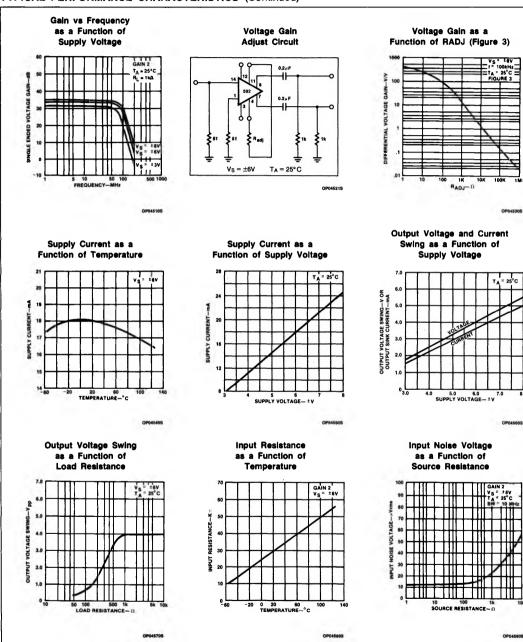
1. Gain select Pins $G_{1\text{A}}$ and $G_{1\text{B}}$ connected together.

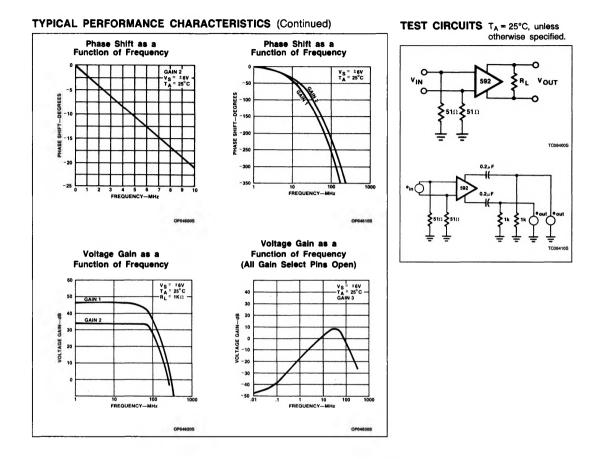

2. Gain select Pins $G_{2\mathsf{A}}$ and $G_{2\mathsf{B}}$ connected together.

3. All gain select pins open.

4. Applies to 10- and 14-pin versions only.

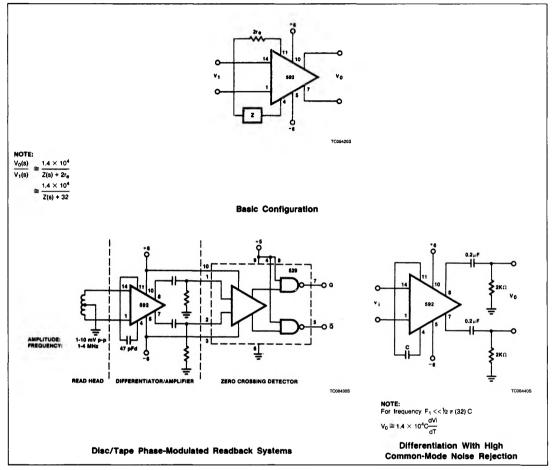
NE/SE592


TYPICAL PERFORMANCE CHARACTERISTICS


Product Specification

NE/SE592

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)



NE/SE592

NE/SE592

TYPICAL APPLICATIONS

.

Video Amplifier

Product Specification

NE/SE592

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V ₀ (s) TRANSFER V ₁ (s) FUNCTION
oo	LOW PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{1}{s + R/L} \right]$
oŵûlo	HIGH PASS	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
oĥĥo	BAND PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/L s + 1/LC} \right]$
	BAND REJECT	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$
1	•	тсо