Signetics

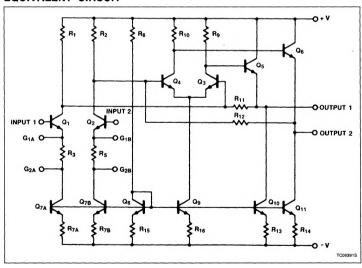
NE/SA/SE592 Video Amplifier

Product Specification

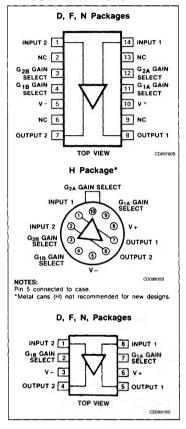
Linear Products

DESCRIPTION

The NE/SA/SE592 is a monolithic, twostage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a highpass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.


FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available


APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

EQUIVALENT CIRCUIT

PIN CONFIGURATIONS

NE/SA/SE592

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to +70°C	NE592N14
14-Pin Cerdip	0 to +70°C	NE592F14
14-Pin Cerdip	-55°C to +125°C	SE592F14
14-Pin SO	0 to +70°C	NE592D14
8-Pin Plastic DIP	0 to +70°C	NE592N8
8-Pin Cerdip	-55°C to +125°C	SE592F8
8-Pin Plastic DIP	-40°C to +85°C	SA592N8
8-Pin SO	0 to +70°C	NE592D8
8-Pin SO	-40°C to +85°C	SA592D8
10-Lead Metal Can	0 to +70°C	NE592H
10-Lead Metal Can	-55°C to +125°C	SE592H

NOTE:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HD8.

ABSOLUTE MAXIMUM RATINGS $T_A = +25$ °C, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	± 8	٧
V _{IN}	Differential input voltage	± 5	٧
V _{CM}	Common-mode input voltage	± 6	٧
lout	Output current	10	mA
TA	Operating ambient temperature range SE592 NE592	-40 to +85 0 to +70	ပ္
T _{STG}	Storage temperature range	-65 to +150	°C
P _D MAX	Maximum power dissipation, T _A = 25°C (still air) ¹ F-14 package F-8 package D-14 package D-8 package H package N-14 package N-18 package	1.17 0.79 0.98 0.79 0.83 1.44 1.17	W W W W W

NOTE:

1. Derate above 25°C at the following rates:

F-14 package at 9.3mW/°C

F-8 package at 6.3mW/°C

D-14 package at 7.8mW/°C

D-8 package at 6.3mW/°C H package at 6.7mW/°C

N-14 package at 11.5mW/°C

N-8 package at 9.3mW/°C

NE/SA/SE592

DC ELECTRICAL CHARACTERISTICS $T_A = \pm 25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			
			Min	Тур	Max	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2, 4}	$R_L = 2k\Omega$, $V_{OUT} = 3V_{P-P}$	250 80	400 100	600 120	300 90	400 100	500 110	V/V V/V
	High gain part		400	500	600				V/V
R _{IN}	Input resistance Gain 1 ¹ Gain 2 ^{2, 4}		10	4.0 30		20	4.0 30		kΩ kΩ
C _{IN}	Input capacitance ²	Gain 2 ⁴		2.0			2.0		pF
los	Input offset current			0.4	5.0		0.4	3.0	μΑ
IBIAS	Input bias current			9.0	30		9.0	20	μА
V _{NOISE}	Input noise voltage	BW 1kHz to 10MHz		12			12		μV _{RMS}
V _{IN}	Input voltage range		± 1.0			± 1.0			٧
CMRR	Common-mode rejection ratio Gain 2 ⁴ Gain 2 ⁴	V _{CM} ± 1V, f < 100kHz V _{CM} ± 1V, f = 5MHz	60	86 60		60	86 60		dB dB
PSRR	Supply voltage rejection ratio Gain 2 ⁴	$\Delta V_S = \pm 0.5V$	50	70		50	70		dB
V _{OS}	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	R _L = ∞ R _L = ∞ R _L = ∞		0.35	1.5 1.5 0.75		0.35	1.5 1.0 0.75	V V
V _{CM}	Output common-mode voltage	R _L = ∞	2.4	2.9	3.4	2.4	2.9	3.4	٧
V _{OUT}	Output voltage swing differential	$R_L = 2k\Omega$	3.0	4.0		3.0	4.0		٧
Rout	Output resistance			20			20		Ω
Icc	Power supply current	R _L = ∞		18	24		18	24	mA

NOTES:

^{1.} Gain select Pins G_{1A} and G_{1B} connected together.

^{2.} Gain select Pins G_{2A} and G_{2B} connected together.

^{3.} All gain select pins open.

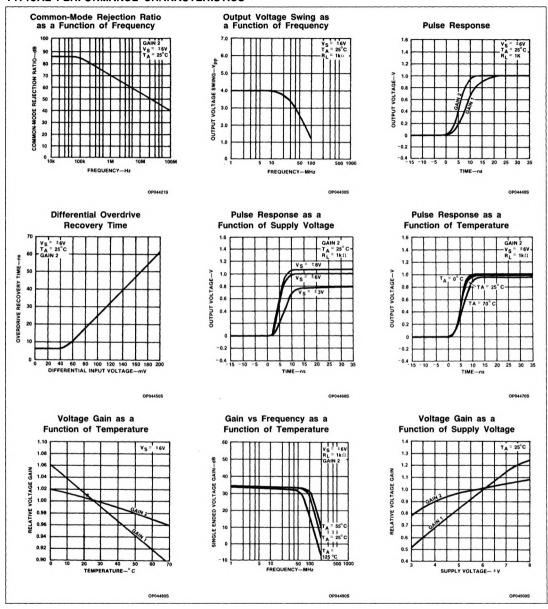
^{4.} Applies to 10- and 14-pin versions only.

NE/SA/SE592

DC ELECTRICAL CHARACTERISTICS $V_{SS} = \pm 6V$, $V_{CM} = 0$, $0^{\circ}C \leqslant T_{A} \leqslant 70^{\circ}C$ for NE592; $-40^{\circ}C \leqslant T_{A} \leqslant 85^{\circ}C$ for SA592, -55°C ≤ T_A ≤ 125°C for SE592, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

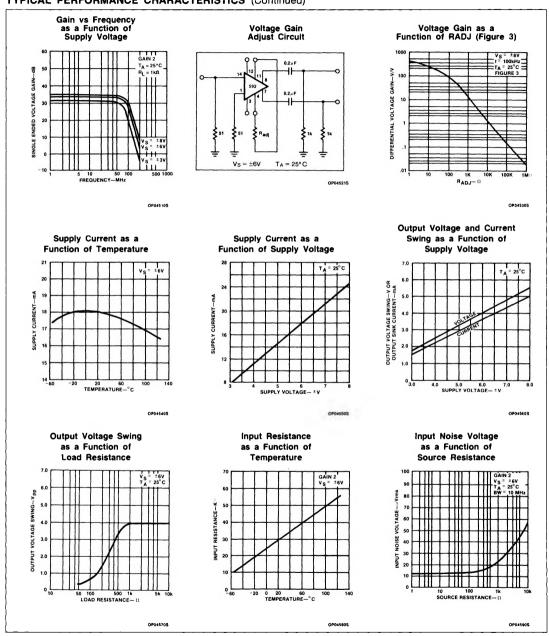
SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			
			Min	Тур	Max	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2, 4}	$R_L = 2k\Omega$, $V_{OUT} = 3V_{P.P}$	250 80		600 120	200 80		600 120	V/V V/V
	High gain part		400	500	600				V/V
R _{IN}	Input resistance Gain 2 ^{2, 4}		8.0			8.0			kΩ
los	Input offset current				6.0			5.0	μΑ
IBIAS	Input bias current				40			40	μΑ
V _{IN}	Input voltage range		± 1.0			± 1.0			V
CMRR	Common-mode rejection ratio Gain 2 ⁴	V _{CM} ± 1V, f < 100kHz	50			50			dB
PSRR	Supply voltage rejection ratio Gain 2 ⁴	$\Delta V_S = \pm 0.5V$	50			50			dB
Vos	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	$R_{L} = \infty$ $R_{L} = \infty$ $R_{L} = \infty$			1.5 1.5 1.0			1.5 1.2 1.0	V V V
V _{OUT}	Output voltage swing differential	$R_L = 2k\Omega$	2.8			2.5			٧
loc	Power supply current	R _L = ∞			27			27	mA

NOTES:

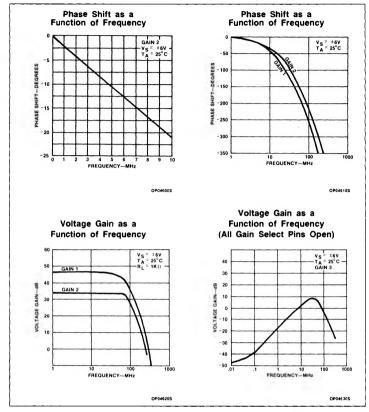

- 1. Gain select Pins G_{1A} and G_{1B} connected together.
- 2. Gain select Pins G_{2A} and G_{2B} connected together.
- 3. All gain select pins open.
- 4. Applies to 10- and 14-pin versions only.

AC ELECTRICAL CHARACTERISTICS $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$, unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

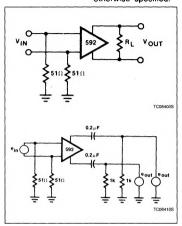
SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			
			Min	Тур	Max	Min	Тур	Max	UNIT
BW	Bandwidth Gain 1 ¹ Gain 2 ^{2, 4}			40 90			40 90		MHz MHz
t _R	Rise time Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} = 1V _{P-P}		10.5 4.5	12		10.5 4.5	10	ns ns
t _{PD}	Propagation delay Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} = 1V _{P.P}		7.5 6.0	10		7.5 6.0	10	ns ns


- 1. Gain select Pins G_{1A} and G_{1B} connected together.
- 2. Gain select Pins $\mbox{\rm G}_{2\mbox{\scriptsize A}}$ and $\mbox{\rm G}_{2\mbox{\scriptsize B}}$ connected together.
- 3. All gain select pins open.
- 4. Applies to 10- and 14-pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS

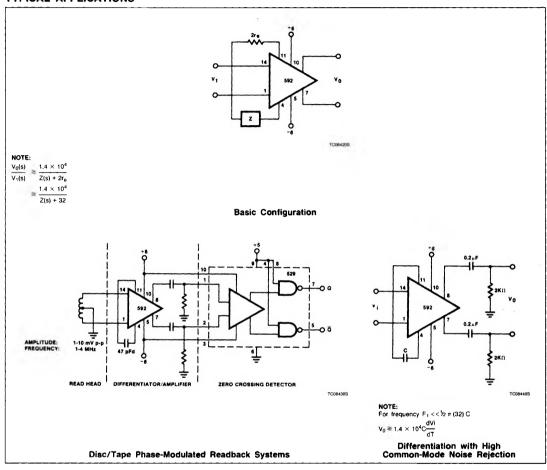

NE/SA/SE592

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

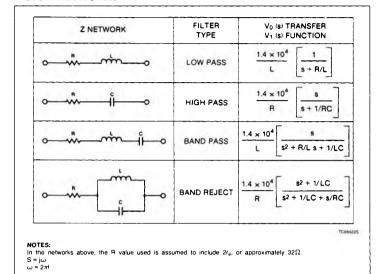


NE/SA/SE592

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)



TEST CIRCUITS T_A = 25°C, unless otherwise specified.


NE/SA/SE592

TYPICAL APPLICATIONS

NE/SA/SE592

FILTER NETWORKS

4-252