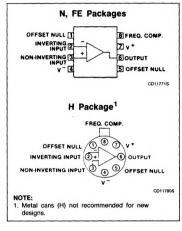
# **Signetics**

#### **Linear Products**

#### DESCRIPTION

The 531 is a fast slewing high performance operational amplifier which retains DC performance equal to the best general purpose types while providing far superior large-signal AC performance. A unique input stage design allows the amplifier to have a largesignal response nearly identical to its small-signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large-signal bandwidths are required, the amplifier out-performs conventional designs which have much better smallsignal response. Also, because the small-signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation, and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications.


## NE/SE531 High Slew Rate Operational Amplifier

**Product Specification** 

#### FEATURES

- 35V/µs slew rate at unity gain
- Pin-for-pin replacement for μA709, μA748, or LM101
- Compensated with a single capacitor
- Same low drift offset null circuitry as μA741
- Small-signal bandwidth 1MHz
- Large-signal bandwidth 500kHz
- True op amp DC characteristics make the 531 the ideal answer to all slew rate limited operational amplifier applications

#### PIN CONFIGURATIONS



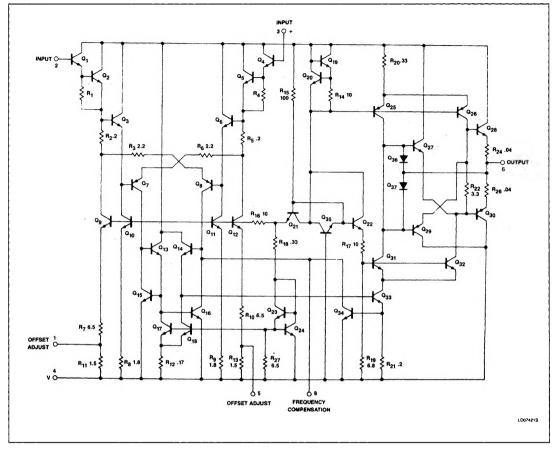
#### **ABSOLUTE MAXIMUM RATINGS**

| SYMBOL             | PARAMETER                                                                                                           | RATING                  | UNIT           |
|--------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|
| Vs                 | Supply voltage                                                                                                      | ± 22                    | V              |
| P <sub>D MAX</sub> | Maximum power dissipation<br>T <sub>A</sub> = 25°C (still-air) <sup>1</sup><br>FE package<br>N package<br>H package | 780<br>1160<br>830      | mW<br>mW<br>mW |
|                    | Differential input voltage                                                                                          | ± 15                    | V              |
| V <sub>CM</sub>    | Common-mode input voltage <sup>2</sup>                                                                              | ± 15                    | v              |
|                    | Voltage between offset null and V-                                                                                  | ± 0.5                   | V              |
| T <sub>A</sub>     | Operating ambient temperature range<br>NE531<br>SE531                                                               | 0 to +70<br>-55 to +125 | ာ<br>သ         |
| T <sub>STG</sub>   | Storage temperature range                                                                                           | -65 to +150             | °C             |
| T <sub>SOLD</sub>  | Lead soldering temperature (10sec max)                                                                              | 300                     | °C             |
|                    | Output short-circuit duration <sup>3</sup>                                                                          | indefinite              |                |

NOTES:

1. The following derating factors should be applied above 25°C:

FE package at 6.2mW/°C


N package at 9.3mW/°C

H package at 6.7mW/°C.

2. For supply voltages less than  $\pm$  15V, the absolute maximum input voltage is equal to the supply voltage.

 Short-circuit may be to ground or either supply. Rating applies to + 125°C case temperature or to + 75°C ambient temperature

### EQUIVALENT SCHEMATIC



#### ORDERING INFORMATION

| DESCRIPTION       | TEMPERATURE RANGE | ORDER CODE |
|-------------------|-------------------|------------|
| 8-Pin Plastic DIP | 0 to +70°C        | NE531N     |
| 8-Pin Ceramic DIP | 0 to +70°C        | NE531FE    |
| 8-Pin Metal Can   | 0 to +70°C        | NE531H     |
| 8-Pin Ceramic DIP | -55°C to +125°C   | SE531FE    |
| 8-Pin Metal Can   | -55°C to +125°C   | SE531H     |

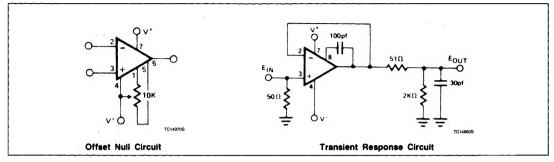
### NE/SE531

### NE/SE531

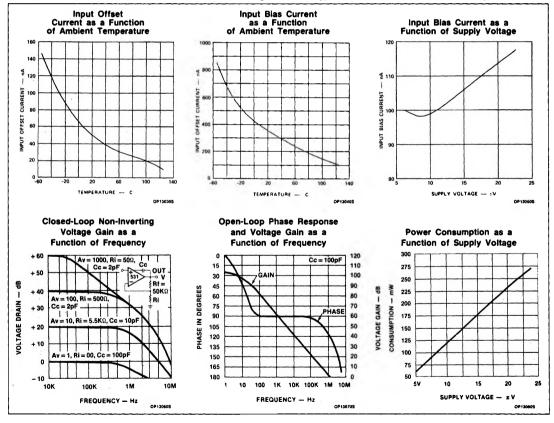
| SYMBOL                                  |                                                          |                                                                                                                                                                      |            | SE531     |                    |            | NE531     |                      |                         |
|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|--------------------|------------|-----------|----------------------|-------------------------|
|                                         | PARAMETER                                                | TEST CONDITIONS                                                                                                                                                      | Min        | Тур       | Max                | Min        | Тур       | Max                  | UNIT                    |
| ν <sub>os</sub><br>Δν <sub>os</sub>     | Offset voltage                                           | $\begin{array}{l} R_{S} \leqslant 10k\Omega, \ T_{A} = 25^{\circC} \\ R_{S} \leqslant 10k\Omega, \ over \ temp \\ Over \ temp \end{array}$                           |            | 2.0<br>10 | 5.0<br>6.0         |            | 2.0<br>10 | 6.0<br>7.5           | mV<br>mV<br>μV/°C       |
| los<br>∆l <sub>OS</sub>                 | Offset current                                           | $T_A = 25^{\circ}C$ $T_A = High$ $T_A = Low$ Over temp                                                                                                               |            | 30<br>0.4 | 200<br>200<br>500  |            | 50<br>0.4 | 200<br>200<br>300    | nA<br>nA<br>nA<br>nA/°C |
| I <sub>BIAS</sub><br>ΔI <sub>BIAS</sub> | Input bias current                                       | $T = 25^{\circ}C$ $T_{A} = High$ $T_{A} = Low$ Over temp                                                                                                             |            | 300<br>2  | 500<br>500<br>1500 |            | 400<br>2  | 1500<br>1500<br>2000 | nA<br>nA<br>nA<br>nA/°C |
| V <sub>CM</sub><br>CMRR                 | Common-mode voltage range<br>Common-mode rejection ratio | $\begin{array}{c} T_{A} = 25^\circ C \\ T_{A} = 25^\circ C, \ R_{S} \leqslant 10 \mathrm{k} \Omega \\ Over temp  \ R_{S} \leqslant 10 \mathrm{k} \Omega \end{array}$ | ± 10<br>70 | 90        |                    | ± 10<br>70 | 100       |                      | V<br>dB<br>dB           |
| R <sub>IN</sub>                         | Input resistance                                         | T <sub>A</sub> = 25°C                                                                                                                                                |            | 20        |                    |            | 20        |                      | MΩ                      |
| VOUT                                    | Output voltage swing                                     | $R_L \ge 10 k\Omega$ , over temp                                                                                                                                     | ± 10       | ± 13      |                    | ± 10       | ± 13      |                      | V                       |
| Icc                                     | Supply current                                           | $T_A = 25^{\circ}C$<br>$T_{MAX}$                                                                                                                                     |            |           | 7.0<br>7.0         |            |           | 10<br>10             | mA<br>mA                |
| PD                                      | Power consumption                                        | T <sub>A</sub> = 25°C                                                                                                                                                |            |           | 210                |            |           | 300                  | mW                      |
| PSRR                                    | Power supply rejection ratio                             |                                                                                                                                                                      |            | 10        | 150                |            | 10        | 150                  | μV/V<br>μV/V            |
| ROUT                                    | Output resistance                                        | T <sub>A</sub> = 25°C                                                                                                                                                |            | 75        |                    |            | 75        |                      | Ω                       |
| A <sub>VOL</sub>                        | Large-signal voltage gain                                | $\begin{split} T_{A} &= 25^{\circ}C, \\ R_{L} &\geq 10k\Omega, \ V_{OUT} = \pm 10V \\ R_{L} &\geq 10k\Omega, \ V_{OUT} = \pm 10V, \\ over temp \end{split}$          | 50<br>25   | 100       |                    | 20<br>15   | 60        |                      | V/mV<br>V/mV            |
| VINN                                    | Input noise voltage                                      | 25°C, f = 1kHz                                                                                                                                                       |            | 20        |                    |            | 20        |                      | nV/√H                   |
| Isc                                     | Short-circuit current                                    | 25°C                                                                                                                                                                 | 5          | 15        | 45                 | 5          | 15        | 45                   | mA                      |

#### DC ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$ , unless otherwise specified.

AC ELECTRICAL CHARACTERISTICS  $T_A = 25^{\circ}C$ ,  $V_S = \pm 15V$ , unless otherwise specified.<sup>1</sup>


| SYMBOL         |                                                  |                                                                                        | NE531 |                      | SE53 |          |                      |     |                                                         |
|----------------|--------------------------------------------------|----------------------------------------------------------------------------------------|-------|----------------------|------|----------|----------------------|-----|---------------------------------------------------------|
|                | PARAMETER                                        | TEST CONDITIONS                                                                        | Min   | Тур                  | Max  | Min      | Тур                  | Max | UNIT<br>kHz<br>µs<br>µs<br>%<br>%<br>ns<br>V/µs<br>V/µs |
| BW             | Full power bandwidth                             |                                                                                        |       | 500                  |      |          | 500                  |     | kHz                                                     |
| ts             | Settling time (1%)<br>(0.1%)                     | $A_V = +1, V_{IN} = \pm 10V$                                                           |       | 1.5<br>2.5           |      |          | 1.5<br>2.5           |     |                                                         |
|                | Large-signal overshoot<br>Small-signal overshoot | $A_V = +1, V_{IN} = \pm 10V$<br>$A_V = +1, V_{IN} = 400mV$                             |       | 2<br>5               |      |          | 2<br>5               |     |                                                         |
| t <sub>R</sub> | Small-signal rise time                           | A <sub>V</sub> = +1, V <sub>IN</sub> = 400mV                                           |       | 300                  |      |          | 300                  |     | ns                                                      |
| SR             | Slew rate                                        | $A_V = 100$ $A_V = 10$ $A_V = 1 \text{ (non-inverting)}$ $A_V = 1 \text{ (inverting)}$ |       | 35<br>35<br>30<br>35 |      | 20<br>25 | 35<br>35<br>30<br>35 |     |                                                         |

NOTE:


1. All AC testing is performed in the transient response test circuit.

### NE/SE531

#### TEST LOAD CIRCUITS



#### TYPICAL PERFORMANCE CHARACTERISTICS $V_S = \pm 15V$ , $T_A = \pm 25^{\circ}C$ , unless otherwise specified.

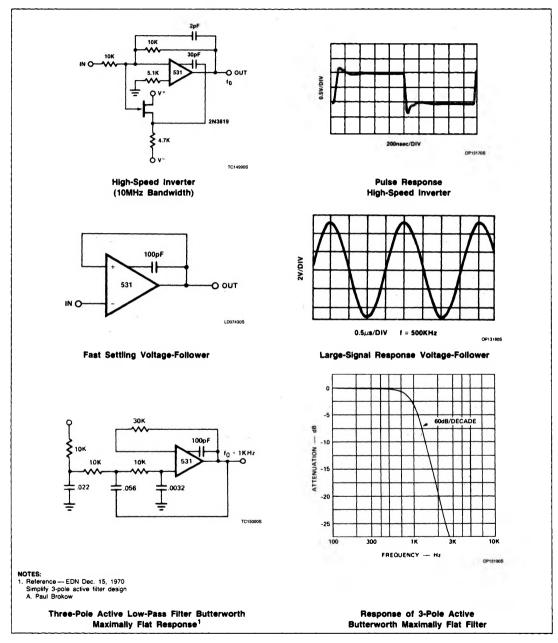


NE/SE531

### High Slew Rate Operational Amplifier

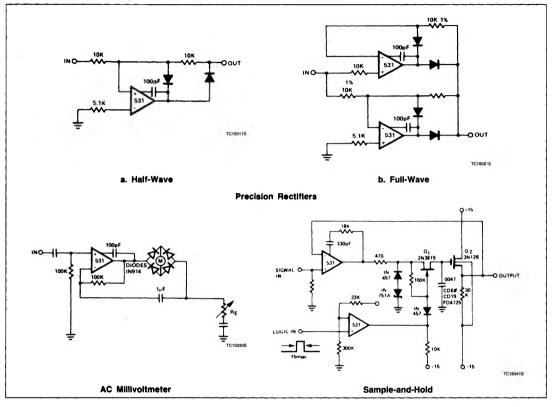
#### specified. **Power Consumption** Output Voltage Swing as a Function of Supply Voltage as a Function of Ambient Temperature Open-Loop Voltage Gain as a Function of Supply Voltage 250 115 + 15 Ě 110 200 10 뜅 OUTPUT SWING - VOLTS 1 1 100 POWER CONSUMPTION + 5 VOLTAGE GAIN 150 95 0 100 90 5 50 85 - 10 80 - 15 15 - 60 - 20 + 20 + 60 + 100 + 140 5 10 20 10 15 5 TEMPERATURE SUPPLY VOLTS - + V °C SUPPLY VOLTAGE - ± V OP131105 OP130905 OP13100S Input Voltage Range as a **Output Voltage Swing as** Voltage-Follower **Function of Supply Voltage** Large-Signal Response a Function of Frequency + 15 27 100pFour > 24 IN 53 2 + 10 10 2K3 + >1 PEAK-TO-PEAK OUTPUT SWING 21 30pl COMMON MODE RANGE 100pF + 5 + 5 OUTPUT VOLTAGE 18 IN 531 o OUT 0 12 0 9 - 5 - 5 - 10 - 10 3 0 - 15 1K зк 100K 300K 30K 1M 10 15 20 10K 0 500 1000 1500 2000 2500 3000 3500 5 FREQUENCY, Hz TIME - nsec SUPPLY VOLTAGE - ± V OP131205 OP131305 OP131405 Voltage-Follower Unity Gain Inverting Amplifier Large-Signal Response **Transient Response** 500 +15 400 +10 2 > 300 I. +5 VOLTAGE 2 100-1 VOLTAGE 531 OUT 200 400mV VIN OUTPUT OUTPUT 100 -5 10% -15 L 0.5 1.0 2.0 3.0 3.5 1.5 4.0 0 200 1200 1400 2.5 60 800 1000 TIME -- usec TIME - .... OP131505 OP13160S

#### TYPICAL PERFORMANCE CHARACTERISTICS (Continued) $V_S = \pm 15V$ , $T_A = +25^{\circ}C$ , unless otherwise


4-77

#### Product Specification

### High Slew Rate Operational Amplifier


### **NE/SE531**

#### TYPICAL APPLICATIONS



### NE/SE531





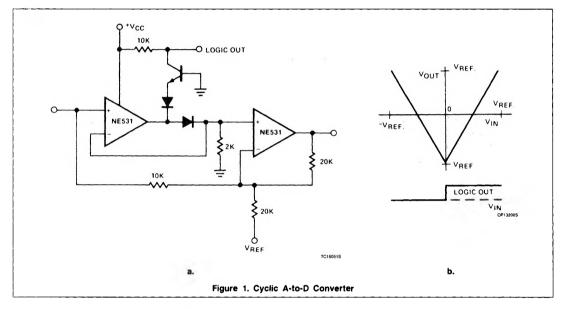
4-79

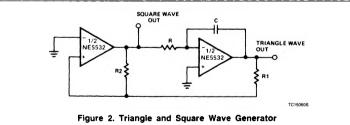
### **NE/SE531**

#### CYCLIC A-TO-D CONVERTER

One interesting, but much ignored, A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts  $V_{REF}$  from the input and doubles the remainder if the polarity was correct. In Figure 1, the signal is full-wave rectified and the remainder of  $V_{IN} - V_{REF}$  is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of  $V_{REF}$ . Pos-

sessing high potential accuracy, the circuit using NE531 devices settles in  $5\mu s$ .


## TRIANGLE AND SQUARE WAVE GENERATOR


The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by the output swing of op amp A-1, and R1/R2 sets the triangle amplitude. The frequency of oscillation in either case is:

$$f = \frac{1}{4RC} \cdot \frac{R2}{R1}$$
(1)

The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical.

The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open-loop, there is no need for compensation. The triangle-generating amplifier must be compensated. The NE5535 device can be used as well, except for the lower frequency response.



