Very Low Supply Current 3-Pin Microprocessor Reset Monitor

The NCP803 is a cost–effective system supervisor circuit designed to monitor $V_{\rm CC}$ in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 10 µsec of $V_{\rm CC}$ falling through the reset voltage threshold. Reset is maintained active for a minimum of 140 msec after $V_{\rm CC}$ rises above the reset threshold. The NCP803 has an open drain active—low $\overline{\rm RESET}$ output. The output of the NCP803 is guaranteed valid down to $V_{\rm CC}$ = 1.0 V and is available in a SOT–23 package.

The NCP803 is optimized to reject fast transient glitches on the $V_{\rm CC}$ line. Low supply current of 1.0 μA ($V_{\rm CC}$ = 3.2 V) make this device suitable for battery powered applications.

Features

- Precision V_{CC} Monitor for 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies
- Precision Monitoring Voltages from 1.6 V to 4.9 V Available in 100 mV Steps
- 140 msec Guaranteed Minimum RESET Output Duration
- \overline{RESET} Output Guaranteed to $V_{CC} = 1.0 \text{ V}$
- Low 1.0 μA Supply Current
- V_{CC} Transient Immunity
- Small SOT-23 Package
- No External Components
- Wide Operating Temperature: -40°C to 105°C

Typical Applications

- Computers
- Embedded Systems
- Battery Powered Equipment
- Critical µP Power Supply Monitoring

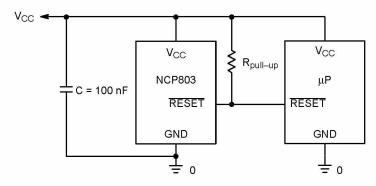
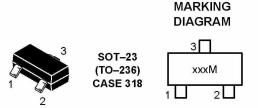
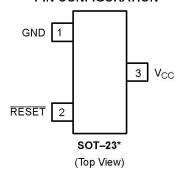



Figure 1. Typical Application Diagram


ON Semiconductor™

http://onsemi.com

xxx = Specific Device Code M = Monthly Date Code

PIN CONFIGURATION

NOTE: *SOT-23 is equivalent to JEDEC (TO-236)

ORDERING INFORMATION

Device	Package	Shipping
NCP803SNxxxT1	SOT-23	3000/Tape & Reel

NOTE: The "xxx" denotes a suffix for V_{CC} voltage threshold options – see page 2777 for more details.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2777 of this data sheet.

ABSOLUTE MAXIMUM RATINGS* (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to GND)	V _{CC}	6.0	٧
RESET		-0.3 to (V _{CC} + 0.3)	V
Input Current, V _{CC}		20	mA
Output Current, RESET		20	mA
dV/dt (V _{CC})		100	V/μsec
Thermal Resistance, Junction to Air	$R_{ heta JA}$	491	°C/W
Operating Temperature Range	T _A	-40 to +105	°C
Storage Temperature Range	T _{stg}	–65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{sol}	+260	°C
Latch–up performance: Negative	I _{Latch} –up	150	mA

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

$$P_D = \frac{T_{J(max)} - T_A}{Re_{JA}}$$
 with $T_{J(max)} = 150^{\circ}C$

ELECTRICAL CHARACTERISTICS $T_A = -40^{\circ}C$ to +105°C unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3)

Characteristic	Symbol	Min	Тур	Max	Unit
V_{CC} Range $T_A = 0^{\circ}C$ to +70°C $T_A = -40^{\circ}C$ to +105°C		1.0 1.2	- -	5.5 5.5	V
Supply Current $V_{CC} = 3.3 \text{ V}$ $T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	Icc	_	0.5	1.2	μА
$T_A = 85^{\circ}\text{C to } +105^{\circ}\text{C}$ $V_{CC} = 5.5 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to } +105^{\circ}\text{C}$		- - -	- 0.8 -	2.0 1.8 2.5	
Reset Threshold (Note 4) NCP803SN490	V _{TH}				V
$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		4.83 4.78 4.66	4.9 - -	4.97 5.02 5.14	
NCP803SN463 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		4.56 4.50 4.40	4.63 - -	4.70 4.75 4.86	
NCP803SN438 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		4.31 4.25 4.16	4.38 - -	4.45 4.50 4.56	
NCP803SN308 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		3.04 3.00 2.92	3.08 - -	3.11 3.15 3.23	

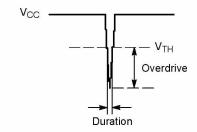
^{3.} Production testing done at T_A = 25°C, over temperature limits guaranteed by design.

^{4.} Contact your ON Semiconductor sales representative for other threshold voltage options.

ELECTRICAL CHARACTERISTICS (continued) $T_A = -40$ °C to +105 °C unless otherwise noted. Typical values are at $T_A = +25$ °C. (Note 5)

Characteristic	Symbol	Min	Тур	Max	Unit
Reset Threshold (continued)	V _{TH}				V
NCP803SN293 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		2.89 2.85 2.78	2.93 - -	2.96 3.00 3.08	
NCP803SN263 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		2.59 2.55 2.50	2.63 - -	2.66 2.70 2.76	
NCP803SN232 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		2.28 2.25 2.21	2.32 - -	2.35 2.38 2.45	
NCP803SN160 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		1.58 1.56 1.52	1.6 - -	1.62 1.64 1.68	
Reset Temperature Coefficient		-	30	-	ppm/°C
V_{CC} to Reset Delay $V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{ mV})$		-	10	-	μsec
Reset Active Timeout Period		140	240	460	msec
RESET Output Voltage Low $V_{CC} = V_{TH} - 0.2 \text{ V}$ $1.6 \text{ V} \le V_{TH} \le 2.0 \text{ V}, I_{SINK} = 0.5 \text{ mA}$ $2.1 \text{ V} \le V_{TH} \le 4.0 \text{ V}, I_{SINK} = 1.2 \text{ mA}$ $4.1 \text{ V} \le V_{TH} \le 4.9 \text{ V}, I_{SINK} = 3.2 \text{ mA}$	V _{OL}	-	-	0.3	V
RESET Leakage Current $V_{CC} > V_{TH}$, RESET De-asserted	ILEAK	-	-	1	μА

^{5.} Production testing done at $T_A = 25^{\circ}C$, over temperature limits guaranteed by design.


PIN DESCRIPTION

Pin No.	Symbol	Description	
1	GND	Ground	
2	RESET	RESET output remains low while V_{CC} is below the reset voltage threshold, and for 240 msec (typ.) after V_{CC} rises above reset threshold.	
3	V _{CC}	Supply Voltage: C = 100 nF is recommended as a bypass capacitor between V_{CC} and GND.	

APPLICATIONS INFORMATION

V_{CC} Transient Rejection

The NCP803 provides accurate $V_{\rm CC}$ monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches) on the power supply line. Figure 2 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies **under** the curve will **not** generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5 μ s or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the $V_{\rm CC}$ pin.

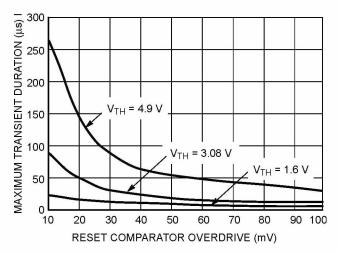


Figure 2. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C

Processors With Bidirectional I/O Pins

Some μP 's (such as Motorola 68HC11) have bi–directional reset pins which interface easily with the Open Drain \overline{RESET} output of the NCP803. As shown in Figure 3, one can connect directly to the \overline{RESET} output of the NCP803 to the \overline{RESET} pin of the μP . The pull–up resistor avoids an undetermined voltage of the \overline{RESET} pin.

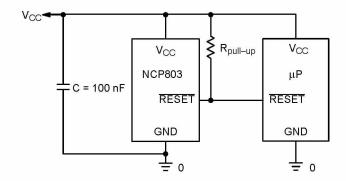


Figure 3. Interfacing to Bidirectional Reset I/O

NCP803 RESET Output Allows Use With Two Power Supplies

In numerous applications the pull–up resistor placed on the \overline{RESET} output is connected to the supply voltage monitored by the IC. Nevertheless, a different supply voltage can also power this output and so level–shift from the monitored supply to reset the μP . However, if the NCP803's supply goes below 1 V, the \overline{RESET} output ability to sink current will decrease and the result is a high state on the pin even though the supply's IC is under the threshold level. This occurs at a $V_{\rm CC}$ level that depends on the $R_{pull-up}$ value and the voltage to which it is connected.

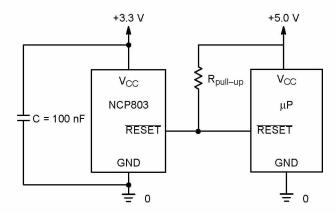


Figure 4. RESET Output with Two Power Supplies

TYPICAL CHARACTERISTICS

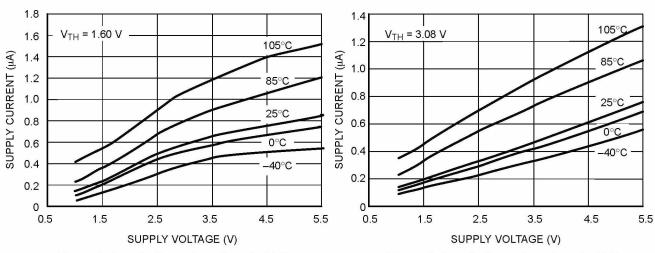


Figure 5. Supply Current vs. Supply Voltage

Figure 6. Supply Current vs. Supply Voltage

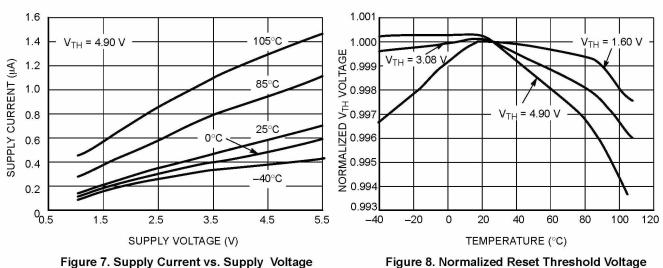
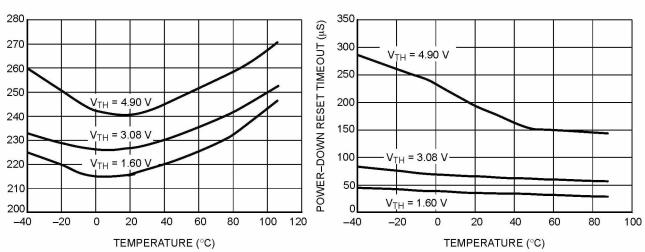


Figure 7. Supply Current vs. Supply Voltage

POWER-UP RESET TIMEOUT (mS)



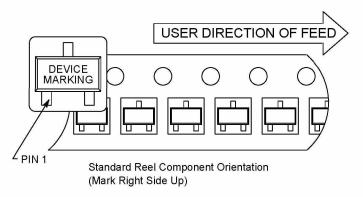

Figure 9. Power-up Reset Timeout vs. Temperature

Figure 10. Power-down Reset Timeout vs. Temperature (Overdrive = 20 mV)

vs. Temperature

TAPING FORM

Component Taping Orientation for 3L SOT-23 (JEDEC-236) Devices

Tape & Reel Specifications Table

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
SOT-23	8 mm	4 mm	3000	7 inches

MARKING AND THRESHOLD INFORMATION

ON Semiconductor Part #	V _{TH} *	Marking (Note 6)
NCP803SN263T1	2.63	SQCM
NCP803SN308T1	3.08	SQEM

^{*}Contact your ON Semiconductor sales representative for other threshold voltage options.

^{6.} M = Monthly Date Code