

N1068B: 0 to +75°C

DIGITAL 10,000 SERIES ECL

DESCRIPTION

Four level translators for converting ECL signal levels to TTL or DTL logic levels. The 1068 incorporates familiar Schottky "totem pole" outputs to provide high speed operation.

FEATURES

- FAST PROPAGATION DELAY = 5.0 ns TYP
- POWER DISSIPATION = 360 mW/PACKAGE TYP
- SCHOTTKY TTL TOTEM POLE OUTPUTS
- RECOMMENDED POWER SUPPLIES:

 V_{CC} = +5.0 V DC ±5%

 $V_{EE} = -5.2 \text{ V DC } \pm 5\%$

FOUR TRANSLATORS PER PACKAGE

CIRCUIT SCHEMATIC

LOGIC DIAGRAM AND PIN CONFIGURATION POSITIVE LOGIC

NEGATIVE LOGIC

Gnd = 16 V_{CC} (+5.0 Vdc) = 9 VEE (-5.2 Vdc) = 8

DC Input Loading Factor = 2.5 (ECL) DC Output Loading Factor = 10 (TTL)

ECTRICA!	LCH	AKA	CI	EK	151	IÇS					TEST VO	TAGE/CURRENT V	ALUES				
						@ Test	Valts						Adc	İ			
Fest procedures are shown for one translator. The other translators are tested in the same manner.					Températura 0°C 1088 +25°C 7 5°C			VIL min to VIL max	VIH min to VIH max	VIH max	V _{CC}	VEE	10L	юн	Ì		
								-5.2 to -1.350	-1.046 to -0.740 -1.000 to -0.700 -0.925 to -0.825	-0.700 	+5.0 +5.0 +5.0	-5.2 -5.2 -5.2	2· 20 20	-2.0	1		
														2.0	4		
														-2.0	1		
		Pin Under	N1088 Test L				Limits			TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:						1	
			0°C		+25°C		+75°C				т						╄
Characteristic	Symbol	Test	Min	Max	Min	Мея	Min	Max	Unit	VIL min to VIL max	ViH min to VIH max	VIH max	Vcc	VEE	IOL	ЮН	Gn
Positive Supply	1ссн	9	-	-	-	60	-	-	mAdc	_	-	1,2,8,7,10,14,15	9	8	-	-	16
Drain Current	ICCL	9	-	-	-	45	-	-	mAdc	-	-	-	9	1,2,6,7,8,10,11,14,15	-	-	116
Negative Supply	1E	R	-	-	-	60	-	-	mAde	-	- "	_		1,2,6,7,8,10,11,14,15	-	-	16
Drain Current																	i
Input Current	lin	1	_	-	-	250	-	-	μAdc	-	1	-	9	2,6,7,8,10,11,14,15	-	-	16
		2	-	-	-	250	-	-	μAdc	-	2 .	-	9	1,6,7,8,10,11,14,15		<u> </u>	16
Input Lenkage	1B	1	-	-	-	0.5	-	1.0	µAdc	- '	-	-	9	1,8	-	~	16
Current		2	-	<u>1 </u>	L	0.5	-	1,0	µ Adc	-			9	2.8	-	L =	1 16
Output Voltage High	VOH	4	24	-	2.4	-	24	-	Vdc	2	-	-	9	R	-	3	1€
		4	2.4	1 -	2.4	-	2.4	-	Vdc	1	_		9	8	-	3	16
Output Valtage Low	VOL	4		0.6	- :	0.6	-	0.6	Vdc	-	1	-	9	2,6,7,8,10,11,14,15	3	-	1€
		4	-	0.5	-	0.5	-	0.5	Vdc	-	2	- 7	9	1,6,7,8,10,11,14,15	3	l -	16
Output Short Circuit Current	'sc	4	- 30	-90	-30	-90	-30	90	mAdc	-	-	-	8	1,2,6,7,8,10,11,14,15		-	3,1
			Тур	Max	Тур	Max	Тур	Max	1	Pulsa in	Pulse Cut		1				
Switching Times	t1-4+	4			5.0				ns	1	4	-	9	2,6,7,8,10,11,14,15	_		16
	11+4	1	-	-		-	-	-	1 1	1	1	-		2,6,7,8,10,11,14,16	-	1 -	lι
	12-4+	1	-	-	1	-	-	-	1	2	1	_	1	1,6,7,8,10,11,14,15	-	-	Į į
	12+4-		l –	-	1	_	-	-	1	2	1	_		1,6,7,8,10,11,14,15	-	-	

SWITCHING TIME TEST CIRCUIT

WAVEFORM@ 25°C

The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent.

 $\mathrm{C}_{\mathsf{T}} = 25\,\mathrm{pF} = \mathrm{total}$ parasitic capacitance, which includes probe, wiring, and load capacitances.

ECL 1,000/10,000 SERIES PRODUCT INFORMATION

19.999 SERIES ADVANTAGES

- Best system cost Performance available in a standard integrated circuit family.
- Factor of 2-or-more higher system performance than Schottky TTL.
- Complete family of SS1, interface elements, and high performance MS1, with memories coming soon.
- ECL 10,000 Series includes MECL 10,000 equivalents and Signetics-originated 10,000 Series designs.
- Offers designers the logic power of ECL Open emitter logic, simultaneous complementary outputs, transmission line capability.
- Offers designers system-optimized circuit characteristics Excellent speed power product, excellent propagation delay/ rise time ratio, excellent noise immunity/noise generation ratio, transmission line capability, differential interface capability, and high immunity from power supply variations (±5% recommended, ±10% results in minimal change in system characteristics).
- Compatible with transmission line environment, two-sided printed circuit boards, standard fan cooling techniques. Less support hardware required than Schottky TTL for many system designs.
- Low noise generation capability Complementary balancedload outputs, optimized propagation delay/rise time ratio, minimum "1"/"0" power imbalance.
- Directly compatible with MECL III family. Also compatible with ECL II/MECL II family with some reduction in noise immunity at the interface.
- These products contain a temperature compensated internal bias which ensures that the threshold point tracks with the center of the transition region over temperature.

19,999 SERIES TECHNOLOGY

- Signetics thin-epitaxial high performance, high volume production process.
- Advanced circuit design techniques used:

Internal Emitter-Dot 'OR' Logic
Internal Collector-Dot 'AND' Logic
Internal Stacked Series Gating
Single Stage Delay Exclusive OR Gates

PACKAGE INFORMATION

PACKAGE TYPES

- SSI, MSI and memories will be available in cerdip packages.
 Signetics new designation F specifies cerdip packages or any number of leads. (Previously E specified 16 lead cerdip).
- Presently SSI, and later some MSI and memories will be available in Signetics' double-encapsulated silicone dip with nickel lead frame. This provides minimum thermal resistance and hence maximum thermal compatibility with cerdip packages.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Power Supply Voltage (V _{CC} = 0)	Note 1	VEE	-8	Vdc
input Voltage (V _{CC} = 0)	Note 1	V _{IN}	0 to V _{EE}	Vdc
Output Source Current	Note 1	' ₀		
Continuous		1	50	mAdc
Surge			100	mAdc
Storage Temperature Range	Note 1	T _{stg}	-55 to +125	°c
Operating Junction Temperature	Note 1	TJ	125	°c
Operating Temperature Range	Note 2	TA	-30 to +85	°c
DC Fan-Out (Gates and Flip-Flops)	Notes 2,3	_	70	-
Power Supply Regulation Required	Note 2	_	±10%	–

NOTES:

- 1. Ratings above which device life may be impaired.
- Recommended maximum rating above which performance may be degraded.
- 3. AC fan-out is defined by desired system performance.

ORDERING INFORMATION

- 101XX F Specifies a 10,000 Series product in Cerdip Dualin-Line package, operating temperature range -30°C to +85°C (intermediate Range). (F is Signetics' new designation for Cerdip).
- 101XX B Specifies a 10,000 Series product in 16 pin Silicone
 Dual-in-Line package, operating temperature range
 -30°C to +85°C (intermediate Range).

Availability of a device in a particular package is indicated on the appropriate product Data Sheet.

LOGIC DIAGRAMS: BASIC GATES

NOTES: V_{CC1} = 1, V_{CC2} = 16, V_{EE} = 8

LOGIC DIAGRAMS: COMPLEX GATES

NOTES: VCC1 = 1, VCC2 = 16, VEE = 8

LOGIC DIAGRAMS: MULTIPLE OUTPUT GATES

 $t_{pd} = 2.4 \text{ ns TYP. (ALL OUTPUTS LOADED)}$

10210 DUAL 3-INPUT 3-OUTPUT OR

tpd = 1.7 ns TYP. (ALL OUTPUTS LOADED)

10111 DUAL 3-INPUT 3-OUTPUT NOR

tod = 2.4 ns TYP. (ALL OUTPUTS LOADED)

10211 DUAL 3-INPUT 3-OUTPUT NOR

 $t_{pd} = 1.7 \text{ ns TYP.}$ (ALL OUTPUTS LOADED)

10112 DUAL 3-INPUT 2-NOR/1-OR

tpd = 2.4 ns TYP. (ALL OUTPUTS LOADED)

10212 DUAL 3-INPUT 2-NOR/1-OR

tpd = 1.7 ns TYP. (ALL OUTPUTS LOADED)

NOTES: VCC1 = 1, 15, VCC2 = 16, VEE = 8

LOGIC DIAGRAMS: INTERFACE CIRCUITS

V_{CC1} = 1, V_{CC2} = 16, V_{EE} = 8

LOGIC DIAGRAMS: DUAL LATCHES AND FLIP-FLOPS

NOTES: V_{CC1} = 1, V_{CC2} = 16, V_{EE} = 8

LOGIC DIAGRAMS: MSI: QUAD LATCH, COUNTERS, SHIFT REGISTER

NOTES: $V_{CC1} = 1$, $V_{CC2} = 16$, $V_{EE} = 8$

POSITIVE LOGIC: HIGH LEVEL = '1'

LOGIC DIAGRAMS: MSI DECODERS

LOGIC DIAGRAMS: MSI: MULTIPLEXER\$, QUAD MULTIPLEXER-LATCH

LOGIC DIAGRAMS: MSI: PARITY AND ALU FUNCTIONS

TO BE ANNOUNCED

