

5V Step-Down Switching Regulator

FEATURES

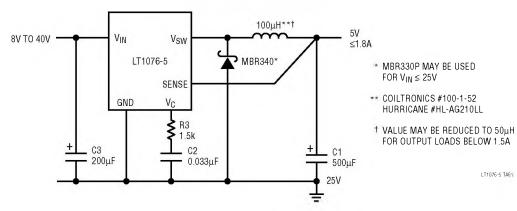
- Fixed 5V Output
- 2A On-Board Switch
- 100kHz Switching Frequency
- 2% Output Voltage Tolerance Over Temperature
- Greatly Improved Dynamic Behavior
- Available in Low Cost 5-Lead Package
- Only 9.5mA Quiescent Current
- Operates Up to 60V Input

APPLICATIONS

- 5V Output Buck Converter
- Tapped Inductor Buck Converter with 4A Output at 5V
- Positive-to-Negative Converter

DESCRIPTION

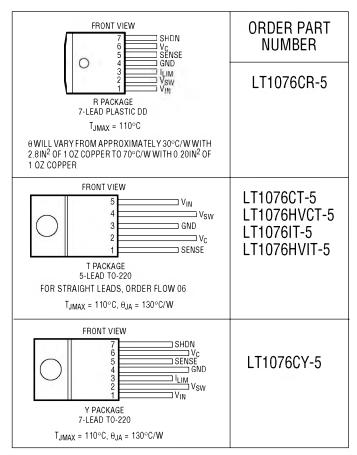
The LT1076-5 is a 2A fixed 5V output monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry, all current limit components, and an output monitor are included on the chip. The topology is a classic positive "buck" configuration but several design innovations allow this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing 40V below ground, allowing the LT1076-5 to drive a tapped inductor in the buck mode with output currents up to 4A.


The LT1076-5 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.

On-chip pulse by pulse current limiting makes the LT1076-5 nearly bust-proof for output overloads or shorts. The input voltage range as a buck converter is 8V to 60V, but a self-boot feature allows input voltages as low as 5V in the inverting and boost configurations.

The LT1076-5 is available in a low cost 5-lead T0-220 package with frequency pre-set at 100kHz and current limit at 2.6A. See Application Note 44 for design details.

TYPICAL APPLICATION


Basic Positive Buck Converter

ABSOLUTE MAXIMUM RATINGS

Input Voltage	
LT1076-5	45V
LT1076HV-5	64V
Switch Voltage with Respect to Input Voltage	
LT1076-5	64V
LT1076HV-5	75V
Switch Voltage with Respect to Ground Pin	
(V _{SW} Negative)	
LT1076-5 (Note 5)	35V
	45V
Sense Pin Voltage2V,	10V
Maximum Operating Ambient Temperature Range	
LT1076C-5, LT1076HVC-5 0°C to 7	0°C
LT1076I-5, LT1076HVI-540°C to 8	5°C
Maximum Operating Junction Temperature Range	
LT1076C-5, LT1076HVC-5 0°C to 12	5°C
LT1076I-5, LT1076HVI-540°C to 12	5°C
Maximum Storage Temperature −65°C to 15	0°C
Lead Temperature (Soldering, 10 sec)30	0°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$, $V_{IN} = 25V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch "On" Voltage (Note 1)	I _{SW} = 0.5A I _{SW} = 2A	•			1.2 1.7	V
Switch "Off" Leakage	$V_{IN} = 25V, V_{SW} = 0$ $V_{IN} = V_{MAX}, V_{SW} = 0$ (Note 6)				150 250	μA μA
Supply Current (Note 2)	$V_{OUT} = 5.5V$, $V_{IN} \le 40V$ $40V < V_{IN} < 60V$ $V_{SHDN} = 0.1V$ (Device Shutdown) (Note 8)	•		8.5 9.0 140	11 12 300	mA mA µA
Minimum Supply Voltage	Normal Mode Start-Up Mode (Note 3)	•		7.3 3.5	8.0 4.8	V
Switch Current Limit (Note 4)	I _{LIM} = Open R _{LIM} = 10k (Note 9) R _{LIM} = 7k (Note 9)	•	2	2.6 1.8 1.2	3.2	A A A
Maximum Duty Cycle		•	85	90		%

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$, $V_{IN} = 25V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switching Frequency	$T_J \le 125$ °C $V_{OUT} = V_{SENSE} = 0V$ (Note 4)	•	90 85	100 20	110 120	kHz kHz kHz
Switching Frequency Line Regulation	$8V \le V_{IN} \le V_{MAX}$ (Note 7)	•		0.03	0.1	%/V
Error Amplifier Voltage Gain (Note 7)	$1V \le V_C \le 4V$			2000		V/V
Error Amplifier Transconductance (Note 7)			3700	5000	8000	μmho
Error Amplifier Source and Sink Current	Source ($V_{SENSE} = 4.5V$) Sink ($V_{SENSE} = 5.5V$)		100 0.7	140 1.0	225 1.6	μΑ mA
Sense Pin Divider Resistance			3	5	8	kΩ
Sense Voltage	V _C = 2V	•	4.85	5	5.15	V
Output Voltage Tolerance	V _{OUT} (Nominal) = 5V All Conditions of Input Voltage, Output Voltage, Temperature and Load Current	•		±0.5 ±1.0	±2 ±3	% %
Output Voltage Line Regulation	$8V \le V_{IN} \le V_{MAX}$ (Note 6)	•		0.005	0.02	%/ V
V _C Voltage at 0% Duty Cycle	Over Temperature	•		1.5 -4.0		V mV/°C
Multiplier Reference Voltage				24		V
Shutdown Pin Current	$V_{SHDN} = 5V$ $V_{SHDN} \le V_{THRESHOLD} (\cong 2.5V)$		5	10	20 50	дц Ац
Shutdown Thresholds	Switch Duty Cycle = 0 Fully Shut Down		2.2 0.1	2.45 0.30	2.7 0.5	V
Thermal Resistance Junction to Case					4	°C/W

The lacktriangle denotes specifications which apply over the full operating temperature range.

Note 1: To calculate maximum switch "on" voltage at currents between low and high conditions, a linear interpolation may be used.

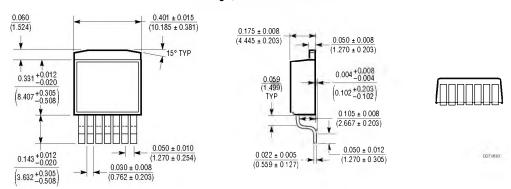
Note 2: A sense pin voltage (V_{SENSE}) of 5.5V forces the V_C pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero.

Note 3: Total voltage from V_{IN} pin to ground pin must be $\geq 8V$ after start-up for proper regulation. For $T_A < 25^{\circ}C$, limit = 5V.

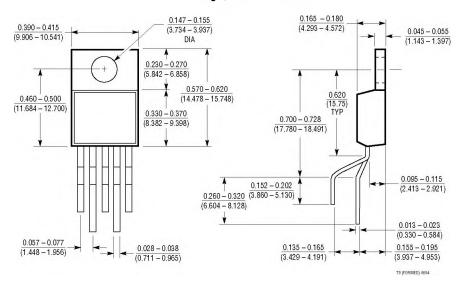
Note 4: Switch frequency is internally scaled down when the sense pin voltage is less than 2.6V to avoid extremely short switch on times. During current limit testing, V_{SENSE} is adjusted to give a minimum switch on time of 1µs.

Note 5: Switch to input voltage limitation must also be observed.

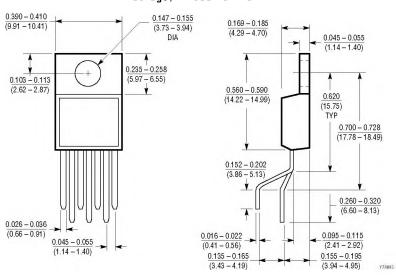
Note 6: V_{MAX} = 40V for the LT1076-5 and 60V for the LT1076HV-5.


Note 7: Error amplifier voltage gain and transconductance are specified relative to the internal feedback node. To calculate gain and transconductance from the Sense pin (Output) to the $V_{\mathbb{C}}$ pin, multiply by 0.44

Note 8: Does not include switch leakage.


Note 9:
$$I_{LIM} \approx \frac{R_{LIM} - 1k}{5k}$$

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.


R Package, 7-Lead Plastic DD

T Package, 5-Lead TO-220

Y Package, 7-Lead TO-220

