National Semiconductor Corporation

LH0020/LH0020C High Gain Operational Amplifier

General Description

The LH0020/LH0020C is a general purpose operational amplifier designed to source and sink 50 mA output currents. In addition to its high output capability, the LH0020/LH0020C exhibits excellent open loop gain, typically in excess of 100 dB. The parameters of the LH0020 are guaranteed over the temperature range of -55° C to $+125^\circ$ C and $\pm5V \leq V_S \leq \pm22V$, while those of the LH0020C are guaranteed over the temperature range of 0°C to $+85^\circ$ C and $\pm5V \leq V_S \leq \pm18V.$

Output current capability, excellent input characteristics, and large open loop gain make the LH0020/LH0020C suitable for application in a wide variety of applications from precision DC power supplies to precision medium power comparator.

Features

- Low offset voltage typically 1.0 mV at 25°C over the entire common-mode voltage range
- Low offset current typically 10 nA at 25°C for the LH0020 and 30 nA for the LH0020C
- Offset voltage is adjustable to zero with a single potentiometer
- ±14V, 50 mA output capability

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 3)

Distributors for availability and specifications.		LH0020	-55°C to +125°C
(Note 3)		LH0020C	0°C to +85°C
Supply Voltage	±22V	Storage Temperature	-65°C to +150°C
Power Dissipation	1.5W	Lead Temperature (Soldering, 10 sec.)	300°C
Differential Input Voltage	±30V	ESD rating to be determined.	
Input Voltage (Note 1)	±15V	-	

Output Short Circuit Duration

Operating Temperature Range

Continuous

Electrical Characteristics (Note 2) $T_{min} \le T_A \le T_{max}$ unless otherwise specified

Parameter	Conditions	LH0020			LH0020C		Linite	
	Conditions		Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_S \le 100\Omega$, $T_A = 25^{\circ}C$ Over Temp.		1.0 2.0	2.5 4.0		1.0 3.0	6.0 7.5	mV mV
Input Offset Current	$T_A = 25^{\circ}C$ Over Temp.		10	50 100		30	200 300	nA nA
Input Bias Current	$T_A = 25^{\circ}C$ Over Temp.		60	250 500		200	500 800	nA nA
Supply Current	$V_{\rm S} = \pm 15 V, T_{\rm A} = 25^{\circ} {\rm C}$		3.5	5.0		3.6	6.0	mA
Input Resistance	$T_A = 25^{\circ}C$	0.6	1.0		0.3	1.0		MΩ
Large Signal Voltage Gain		100 50	300		50 30	150		V/mV V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 300\Omega$, $T_A = 25^{\circ}C$ Over Temp.	14.2 14.0	14.5		14.0 13.5	14.2		v v
Output Short Circuit Current	$V_{S} = \pm 15V, R_{L} = 0\Omega, T_{A} = 25^{\circ}C$		100	130	25	120	140	mA
Input Voltage Range	$V_{S} = \pm 15V$	±12			±12			v
Common-Mode Rejection Ratio	$R_{S} \leq 100\Omega$	90	96		90	96		dB
Power Supply Rejection Ratio	$R_S \le 100\Omega$	90	96		90	96		dB

Note 1: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 2: These specifications apply for $\pm 5V \le V_S \le \pm 22V$ for the LH0020, $\pm 5V \le V_S \le \pm 18V$ for the LH0020C, pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.

Note 3: Refer to RETS0020G for LH0020G militiary specifications.

Typical Applications Offset Adjustment Unity Gain Frequency Compensation +15 C1 5000 pF 12 6 6 t OUTPUT 11 LH 0020 INPUT 10 LH0020 *Rs 11 5 1K R_L = 300Ω ٤ 5 INPUT-7 10K 9 $R_{\rm S} \, {\rm C2} = 3 \times 10^{-7}$ C2 300 pF

TL/H/5554-3

TL/H/5554-4

OUTPUT