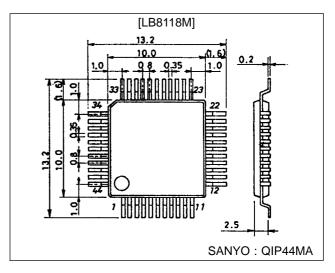
Monolithic Digital IC

Actuator Driver for Portable CD Players

Preliminary


Overview

The LB8118M is an actuator driver IC designed for portable CD players that operate at 2.4 V (two Ni-Cd batteries) or 3.0 V (two dry cells). Because the four-channel driver control outputs are divided into two groups, this device reduces power dissipation considerably during double-speed play.

Package Dimensions

unit : mm

3148-QFP44MA

Functions and Features

- H bridge drivers (output dynamic range maximum is about 2 V) on chip for four channels to drive each CD actuator (the focus coil, the tracking coil, the spindle motor, and the sled motor).
- Step-up circuit (voltage to be set by an external resistor) on chip that is used to apply voltage to the CD DSP, ASP and microcontroller. Center-tap coil for step-up circuit makes it possible to supply the driver control voltage. (However, the drive Tr, L, C, and Di are all external.)
- Oscillator circuits for each converter on chip. (C is external.)
- Four-channel driver control output is divided into two groups (the focus/tracking group and the spindle/sled group) for minimum loss at double-speed playback. Highest operating voltage detected in each group is supplied for each 2ch H bridge driver after PMW conversion. The single channel PWM drive without dividing the outputs into two groups is also possible. (However, the PWM PNP-Tr, NPN-Tr, L, C, and Di are all external.)
- The dynamic range of 4-channel H bridge driver output voltage is up to 2 V on the focus and tracking side, and can be set by the Vosat pin on the spindle and sled side. However, if the 4-channel H bridge voltages in the H bridge driver block are the same, the maximum voltage is determined using the Voset pin.
- Sled motor driving mode is switchable between step drive mode for lower power dissipation, and normal V-type drive mode. (The other three channels are fixed to V-type.)
- In the spindle motor drive circuit, the control gain can be set higher for double-speed playback.
- PWM step-down circuit for external power operates when external power (4 V or higher) is supplied. In this function, external power is converted to V_{CC} power supply, and two type voltage setting is possible. In playback mode, step-up voltage for DSP has to be set equal to or lower than V_{CC}, but in charging the battery, it has to be set higher enough than V_{CC}. So step-down voltage (V_{CC}) setting of two types is possible with two pairs of external resistor. (Switching port is provided.)

(However, the PWM PNP-Tr, NPN-Tr, L, C, and Di are all external.) (However, the PWM PNP-Tr, NPN-Tr, L, C, and Di are all external.)

- APC step-up power supply for the laser diode. (Also supports a pre-power supply for the internal bias.) The laser diode is controlled with a voltage of roughly 0.5 V.
- Battery pulse charging function on chip. (However, the drive NPN-Tr, and the current feedback C and R are external.)
- · Battery check comparator on chip.
- The system can be started up and stopped by outputs from the microcontroller.
- Actuator muting function on chip (for all four channels simultaneously).
- Thermal shutdown circuit on chip.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

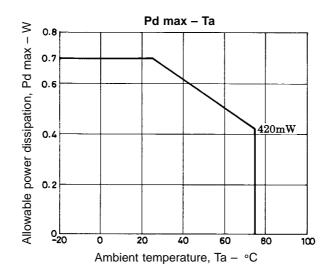
Specifications

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
V _{CD} pin input voltage	V _{CD} max		10	V
H bridge output current	I _{OUT} max	Maximum per channel is 400 mA.	800	mA
Allowable power dissipation	Pd max	Independent IC	700	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

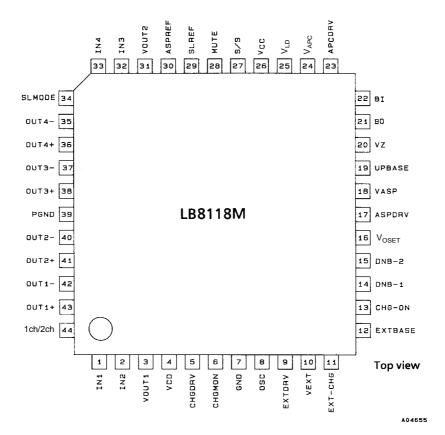
Absolute Maximum Ratings at Ta = $25 \circ C$

Allowable Operating Ranges at Ta = $25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		1.6 to 5.0	V
V _{CD} pin input voltage	V _{CD}		3.6 to 9.0	V
V _{CC} drop setting voltage when external voltage input is applied	V _{CC(EXT)}		3.0 to 5.0	V
H Bridge limiter voltage	V _H lim		0.15 to 2.25	V


Electrical Characteristics at Ta = 25 °C, V_{CC} = 3 V, V_{CD} = 4 V

Parameter	Symbol	Conditions	min	typ	max	Unit
[Power Supply Block]	•					
Standby current drain	Icco	$S/S = [H]$, the total of V_{CC} and V_{CD}			100	μA
V _{CC} quiescent current drain	Icc	S/S = [L], V _{CC} line only		11.0		mA
V _{CD} quiescent current drain	I _{CD}	S/S = [L], with no driver input		4.0		mA
[ASP step-up circuit]	•	· · · · · ·				
ASP drive output current	IO ASPDRV			2.0		mA
V _{ASP} pin input bias current	I _{B VASP}				200	nA
ASPBASE pin saturation voltage	V _{O ASPBASE}	I _O = 1 mA			0.2	V
Load regulation	R _{LD ASP}	V _{ASP} = 3.4 V, L = 30 μH, C = 220 μF			1000	mV/A
Line regulation	R _{LN ASP}	V _{ASP} = 3.4 V, L = 30 μH, C = 220 μF			100	mV/V
Minimum off duty	D _{min ASP}			50		%
[APC step-up circuit]	-					
APC drive output current	IO APCDRV			0.5		mA
V _{APC} pin input bias current	IB VAPC				200	nA
V _{APC} – V _{LD} voltage	V _{APC} – LD			0.5		V
Load regulation	R _{LD APC}	V _{APC} = 3.4 V, L = 30 μH, C = 220 μF			1000	mV/A
Line regulation	R _{LN APC}	V _{APC} = 3.4 V, L = 30 μH, C = 220 μF			100	mV/V
Minimum off duty	D _{min APC}			50		%
[H Bridge Output Block, PWM Blo	ck]	· · ·				•
Output saturation voltage	V _{H sat}	I _O = 200 mA, TOP + BOTTOM		0.30	0.45	V
Maximum output voltage	V _{PWM} max	V _{OUT} 1		2.25		V
PWM applied offset voltage	V _{PWMOFF}	Each V _{IN} = V _{ASPREF}		0.17		V
DNB – 1,2 pins output current	lo DNB1,2			V _{OUT} /60		mA
Load regulation	R _{LD PWM}	V _{OUT} = 2.25 V, L = 30 μH			1000	mV/A
Line regulation	R _{LN PWM}	V _{OUT} = 2.25 V, L = 30 μH			100	mV/V
[Drive Control Block]		· · · ·				
CH1 to 4 input voltage range	V _{IN1-4}		0.5		V _{CD} -0.5	V
Input bias current	I _{B IN}	Each V _{IN} = V _{ASP REF}			2.0	μA
ASP REF input voltage range	VASPR	Each V _{IN} = V _{ASP REF}	1.2		V _{CD} -1.3	V
CH1,2,4 transfer gain	G124 _{IN}	R _L = 10 Ω		7.95		dB
CH3 L side transfer gain	G3L _{IN}	R _L = 10 Ω		10.0		dB
Negative/positive transfer gain difference	∆G _{IN}	R _L = 10 Ω	-1.0	0	+1.0	dB
Input dead zone voltage range	V _{DZ}	R _L = 10 Ω	0	0	30	mV


Continued on next page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[SLED Drive Circuit]		•				
SL REF pin input voltage range	V _{SL REF}		V _{ASP REF} +0.1		V _{CD} -1.0	V
SL REF pin input bias current	IB SL REF				200	nA
Positive side setting offset voltage between IN4 and SL REF	V _{off} SL REF	V _{SL REF} = 2.3 V, V _{ASP REF} = 2 V	-20		+20	mV
Dual side step width difference voltage	V _{SL DIF}	$V_{SL REF} = 2.3 V, V_{ASP REF} = 2 V$	-20		+25	mV
SL MODE pin high voltage	V _{H SL MODE}		2.0			V
SL MODE pin low voltage	V _{L SL MODE}		-25		+1.0	V
[OSC Block]						
Maximum oscillation frequency	F _{OSC max}				100	kHz
Input bias current	I _{B OSC}		-2.0			μA
[S/S Pin Function]						
S/S start voltage	V _{SS} ON				V _{CC} -1.0	V
S/S off voltage	V _{SS} OFF		0.5			V
[External Voltage Input Block]		1			-	
Minimum operating input voltage when external voltage input is applied	V _{EXT} min	R _{IN} = 1 kΩ	3.5			V
EXTDRV pin output current	IO EXT DRV			200		μA
VZ pin voltage	VZ	V_{EXT} = 4.5 V, R_{IN} = 1 k Ω		3.0		V
VZ pin inflow current	I _{VZ}				20	mA
V _{EXT} , V _{EXT} -CHG pin Input bias current	I _{B EXTCHG}				200	nA
EXTBASE pin saturation voltage	VEXTBASE	I _O = 1 mA			0.2	V
[Muting Block]						
Mute on voltage	V _{ON MUTE}				1.0	V
Mute off voltage	V _{OFF} MUTE		2.0			V
[Pulse Charging Function]						
Internal reference voltage	V _{CHG REF}			0.3		V
CHG-ON pin ON voltage	V _{CHG-ON}		2.0			V
CHG-ON Pin OFF voltage	V _{CHG-OFF}				1.0	V
CHG-MON pin input bias current	IB CHG MON				200	nA
CHGDRV pin output current	IO CHG DRV			3.0		mA
[H Bridge 1-channel/2-channel dri		·	· · ·			
1-channel/2-channel switching, 2-channel on voltage	V _L 1ch/2ch				1.0	V
1-channel/2-channel switching, 1-channel on voltage	V _H 1ch/2ch		2.0			V
[TSD Block]			· ·			
Operating temperature	T _{TSD}	Design target value, Note 1		180		°C
Temperature hysteresis width	ΔT_{TSD}	Design target value, Note 1	+	20		°C
[Battery Check Block]					1	1
Input bias current	I _{BIN}				200	nA
Output saturation voltage	V _{BO}	I _O = 100 μA	+ +		0.3	V

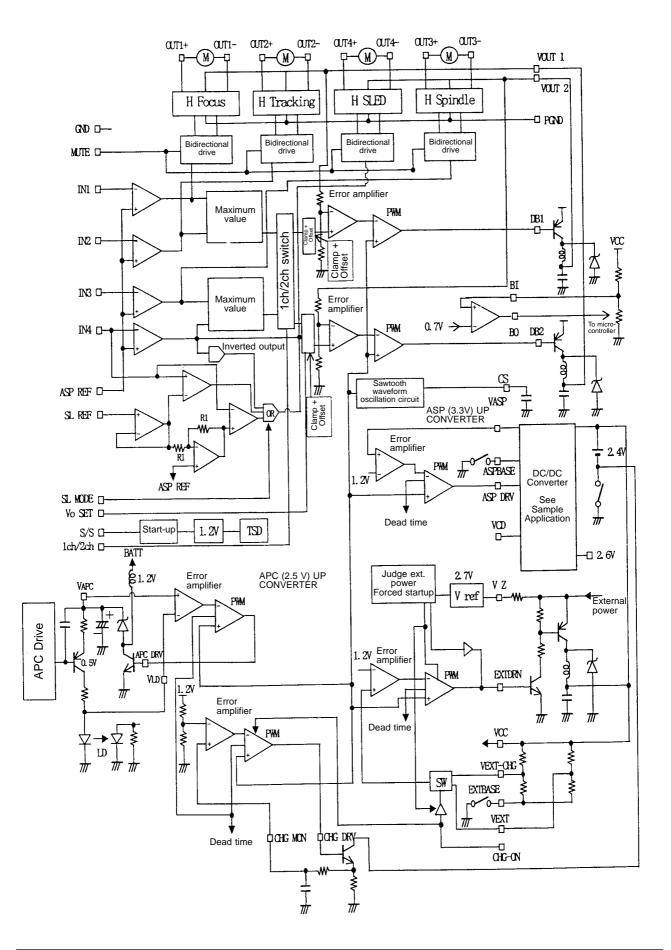
Note 1: For parameters which have an entry of "design target value" in the "Conditions" column, no measurements are made.

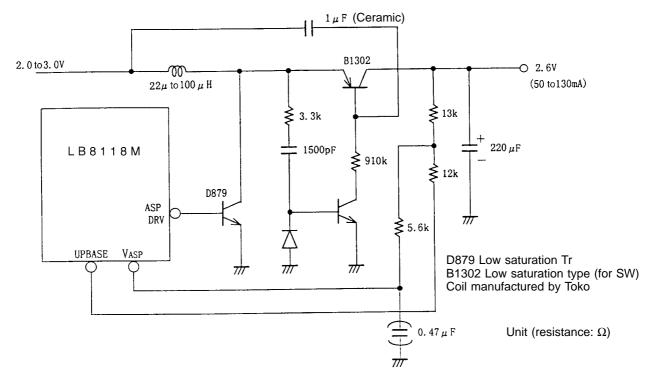
Pin Assignment

Pin Functions

Pin No.	Symbol	Equivalent circuit	Function
1, 2 32, 33	IN1, IN2 IN3, IN4	VCD VCD VCD VCD VCD VCD ASPREF 13k 0	Actuator control signals for each driver: IN1: Focus, IN2: Tracking, IN3: Spindle, IN4: Sled. These signals are input from the ASP (DSP).
30	ASP _{REF}		Control reference signal input pin for each driver. This signal is input from the ASP (DSP).
43, 42	OUT1⁺, 1 [−]		Focus coil actuator drive output
41, 40	OUT2⁺, 2 [_]	VCD VOUT1/2 VCD	pins. Tracking coil actuator drive
38, 37 36, 35	OUT3⁺, 3⁻ OUT4⁺, 4⁻		output pins. Spindle motor drive output pins. Sled motor drive output pins. (Each channel includes built-in spark killer diodes.)
3 31	V _{OUT} 1 V _{OUT} 2		Power supply pins for the H bridge driver. V_{OUT} 1 is for the focus/tracking group and V_{OUT} 2 is for the spindle/sled group. Maximum value + α (α : saturation voltage of upper/lower output Tr) of each 2-channel control output is set by external PWM step-down circuit.
4	V _{CD}		Power supply for the actuator driver controller, maximum value circuit for PWM, and sled controller.
5	CHGDRV		Base drive output pin for the external NPN-Tr for the battery pulse charging circuit.
9	EXTDRV		Base drive output pin for the external step-down NPN-Tr used when external voltage input is applied.
14	DNB-1	VCC	Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the focus/tracking group actuators. (Open when there is one H bridge power supply.)
15	DNB-2	Constant-current circuit which changes with the input of CH1 through 4. (3 mA max)	Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.)
17	ASPDRV		Base drive output pin for the external NPN-Tr for the step-up circuit that sets the external voltage for the DSP.
24	APCDRV		Base drive output pin for external NPNTr for the laser diode APC power supply.

Continued on next page.


Pin No.	Symbol	Equivalent circuit	Function
6	CHG MON	0.35V 1ka 1ka 0.35V 1ka 1ka 15mA 15	Constant-current feedback input pin for the charging circuit. The charging current is determined by comparing this input voltage and the internal reference voltage (0.35 V typ.).
12	EXTBASE	100kg 15#A⊖ 60#A⊖ ⁷⁷⁷ 50kg 177 777 777 777 777	Connection pin for the resistor that is used to set the voltage for the external step-down circuit. This prevents invalid current at no power supply.
7	GND		LB8118M GND pin for small-signal block. (GND except output power Tr)
8	OSC	VCC OSC OSC VCC VCC VCC VCC VCC	Input pin for the free-running oscillation circuit that is used to operate the PWM step-down circuit and step-up circuit. The oscillating frequency is determined by external capacitors.
10	V _{EXT}	VCC VCC VCC VCC VVC	Voltage feedback input pin for the external power supply step-down circuit. V_{CC} for playback is set by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
11	VEXTCHG	$1.2V - W + CHG$ $10 \mu A = 50 \mu A$	Voltage feedback input pin for the external power supply step-down circuit. V_{CC} for charging is set by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
18	V _{ASP}		Voltage feedback input pin for the step-up circuit. The step-up voltage is determined by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
19	UPBASE		Connection pin for the resistor that is used to set the voltage of the step-up circuit. This prevents invalid current in standby mode.
20	VZ	S/S S/S S/S S/S S/S S/S S/S S/S S/S S/S	Input pin for start-up circuit when an external voltage input is applied. The external voltage input is applied through a resistor inserted in series. The voltage is basically determined $1.2V + 2V_{BE}$; this pin has a current draining capacity up to 20 mA.
27	S/S		LB8118M start-up input. (Start on a low-level input.)


Continued on next page.

Pin No.	Symbol	Equivalent circuit	Function
23	V _{LD}		Laser diode voltage detection pin. The V _{LD} voltage +0.5 V is V _{APC} .
24	V _{APC}		Voltage feedback input pin for the APC step-up voltage circuit. The step-up power supply voltage is determined by comparing this input voltage with V _{LD} .
16	Voset	VCD VCC Voset Voset	H bridge power supply limiter voltage pin for the V_{OUT} 2 side. The voltage is limited at approximately 190% of the V_O SET voltage. The setting is made by a dividing resistor.
13	CHG-ON	vco vco ^{vcc} 1 1 1	Pin for selecting battery charging when external voltage input is applied. This pin is used to determine the drop voltage for the external voltage input. When low, the drop voltage set by VEXT is selected; when high, the drop voltage set by VEXT-CHG is selected.
28	MUTE		Input pin for simultaneously muting the four- channel drivers. (Low level: mute)
44	1ch/2ch		This pin is used to switch the H bridge power supply between two-channel simultaneous operation and one-channel operation. (Two-channel operation is selected when this pin is low.)
34	SLMODE		Pin for switching the sled driver between V-type control and step control. (High: V-type control; low: step control)
26	V _{CC}		Power supply voltage pin.
29 33	SLREF IN4	VCD VCD VCD VCD VCD VCD VCD VCD VCD VCD	Threshold input pin for driving the sled motor stepwise. Both the positive and negative step levels (with positive-negative symmetry) are determined by the voltage differential between the pin voltage and the ASPREF pin voltage. (See Supplementary Explanation)
39	PGND		Output Tr. GND for the four- channel H bridge drivers. This pin is not internally connected to the small-signal system GND.

Pin No.	Symbol	Equivalent circuit	Function
21	BO		Battery check comparator output. Internal output current is 100 µA.
22	BI		Battery check comparator input. Input bias current is 200 nA or less.

LB8118M Block Diagram

LB8118M Sample Application Circuit

Figure 1 DC 2.6 V Up/down Sample Application

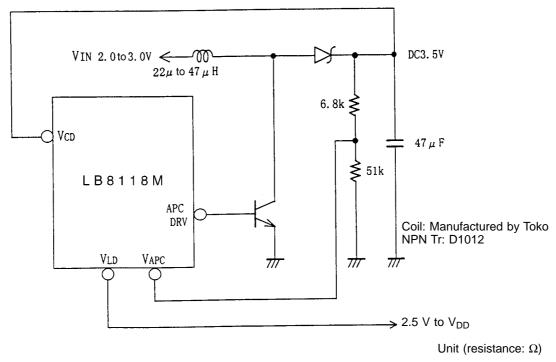
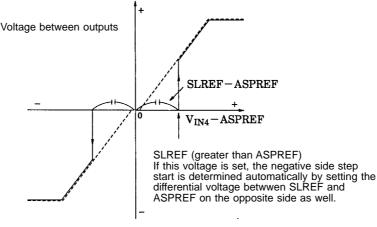


Figure 2 DC 3.5 V Sample Application (when laser power supply is V_{DD})

Supplementary Explanation

1. V_{CD} supply


The V_{CD} line is the power supply for the driver control blocks of channels 1 to 4. The VCD line can be supplied from the DSP or ASP step-up circuit by using a coil with center tap (as shown in the Block Diagram).

However, because the allowable operating range for V_{CD} is 3.6 V to 9.0 V, it is recommended that in order to reduce power dissipation, the voltage should be set to the lower range. (Even if this power supply does not affect the control performance such as the transfer gain.)

2. Sled step drive

Stepping control in this IC for the sled actuator is as described below. Normal V-type control is selected if the SLMODE pin is set high, but by setting this pin low step drive mode with low power dissipation can be selected. (This only affects channel 4.)

The step drive starting level is input from the SLREF pin (must be higher than ASPREF), and the positive side step start is determined by comparing the input voltage with IN4. For the negative side, the step start is determined automatically by setting the differential voltage between the SLREF and the ASPREF on the opposite side, and then comparing that voltage to IN4. In other words, the control characteristics become as defined by the solid line in the diagram below. (The rise on the positive and negative steps has no hysteresis.)

A04656

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.