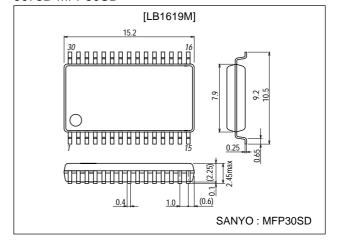


LB1619M

3-Phase Brushless Motor Driver

Applications

The LB1619M is a 3-phase brushless motor driver IC ideally suited for use in VCR capstan motor driver, drum motor driver applications.


Features

- 120° voltage linear type.
- Speed control based on motor voltage control.
- Soft switching type eliminating noises caused by current switching and making the values of external capacitors smaller (comparable to those of chip capacitors).
- On-chip torque ripple compensation circuit.
- On-chip thermal shutdown circuit.

Package Dimensions

unit:mm

3073B-MFP30SD

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		16	V
Maximum supply voltage	V _S max		Vcc	V
Output current	IO		1.5	Α
Hall supply current	lн		20	mA
Allowable power dissipation	Pd max		1.0	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		6 to 16	V

(Design Notes) It should be noted that dielectric breakdown is liable to occur between pin 11 and other pins.

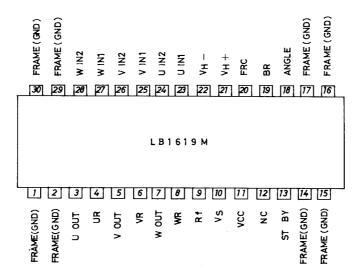
Electrical Characteristics at Ta = 25°C, $V_{CC}=12V$, $V_S=3V$

Parameter	Symbol	Conditions		Ratings			
Falametei	Symbol	Conditions	min	typ	max	Unit	
Supply current 1	Icc	V _{BR} =5V		18	23	mA	
Supply current 2	IS	V _{BR} =5V		5.0	7.0	mA	
Supply standby current	Iccoq	V _{STBY} =0V			180	μA	
Output saturation voltage	V _{O(sat)}	I _{OUT} =1.0A, sink+source			2.3	V	

Continued on next page.

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LB1619M


Continued from preceding page.

Description	Oh. a.l.	O and distance		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Output transistor breakdown voltage	V _{O(sus)}	I _{OUT} =20mA *	16			V	
Output standby voltage	Voq	V _{BR} =5V	1.43	1.53	1.63	V	
Hall amplifier input offset voltage	V _{HOFFset}	*	-5		+5	mV	
Hall amplifier common-mode input voltage range	VHCOM		1.4		2.8	V	
Hall input-output voltage gain	G _{VHO}	Under specified circuit conditions	31.5	34.5	37.5	dB	
Brake pin high-level voltage			2.0			V	
Brake pin low-level voltage					0.8	V	
Brake pin input current					100	μΑ	
Brake pin leak current					-30	μΑ	
FRC pin high-level voltage			2.8			V	
FRC pin low-level voltage					1.2	V	
FRC pin input current					100	μΑ	
FRC pin leak current					-30	μΑ	
Hall supply voltage	٧H	I _H =10mA V _H ⁽⁺⁾ V _H ⁽⁻⁾	0.8	1.0	1.5	V	
Upper residual voltage	V _{XH}	I _{OUT} =100mA	0.40	0.6	0.75	V	
Lower residual voltage	V _{XL}	I _{OUT} =100mA	0.5	0.6	0.7	V	
Residual voltage inflection point				2.0		V	
Overlap amount		V _{CC} =12V, V _S =3.5V	60	70	80	%	
Operating temperature of thermal shutdown circuit		*	150	180	210	°C	
Hysteresis of thermal shutdoun circuit		*		15		°C	
Standby operating voltage					0.1	V	
Standby bias current		Pin GND			10	μA	
V _S OFF-state IC flow-out/in current		Number of revolutions : 1260rpm			0.8	Α	

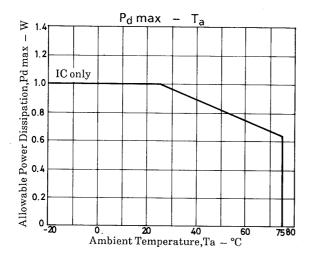
Note) *: Values shown are design targets only. No measurements have been taken.

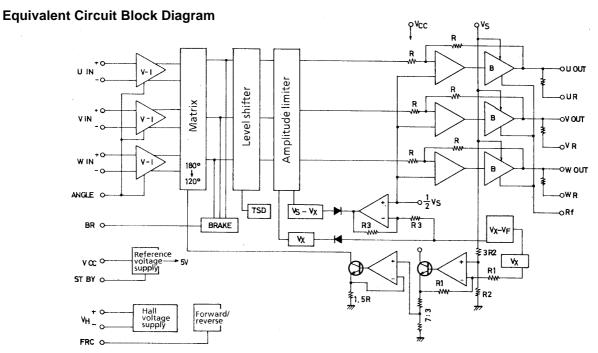
Overlap amount: Value measured at the time of shipment.

Pin Assignment

Note: All FRAME pins are connected to GND.

Truth Table


	Source sink	Input			Forward/Reverse
	Source Silik	U	V	W	Control
1	W phase → V phase		Н	L	L
Ľ	$V \text{ phase } \to W \text{ phase}$	Н	П	_	Н
2	$\text{W phase} \rightarrow \text{U phase}$	Н		L	L
	U phase \rightarrow W phase	ורווי		L	Н
3	$V \text{ phase } \to W \text{ phase}$	Г	L	Н	L
	$\text{W phase} \rightarrow \text{V phase}$				Н
4	U phase → V phase		Н	_	L
-	$V \ phase \ \rightarrow \ U \ phase$	L	П	_	Н
5	$V \; phase \; \rightarrow \; U \; phase$	Н		Н	L
3	U phase \rightarrow V phase		-	'''	Н
6	U phase \rightarrow W phase		Н	Н	L
	W phase \rightarrow U phase	-	-11		Н


Input:

- H : High level. One of the inputs should have a potential at least 0.2V higher than the other.
- L: Low level. One of the inputs should have a potential at least 0.2V lower than the other.

Forward/reverse control:

H: 2.8 to 5V L: 0 to 1.2V

Pin Function Unit (resistance : Ω)

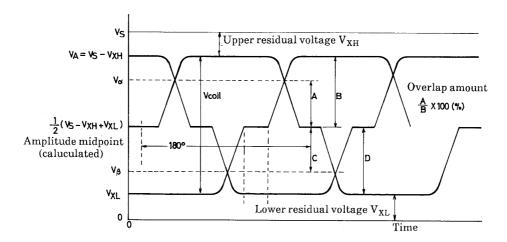
D: 1	D:		T	
Pin No.	Pin Symbol	Pin Voltage	Equivalent Circuit	Pin Description
1, 2	FRAME			GND for other than output.
14, 15	(GND			
16, 17				
29, 30				
3	U _{out}			Output pins.
5	Vout			
7	Wout		• → ↓ ★ ③	
			3)	
4	U _R		(2)	Output pins with resistor of 2Ω .
6	VR VR		• • •	Output pins with resistor or 252.
8	WR			
	**K			
			0	
9	Rf			GND for output transistor.
10	٧s	<v<sub>CC²</v<sub>		Power supply pin for fixing the output amplitude. Must be lower than
				V _{CC} 2 voltage.
11	Vcc			Power supply pin for power amplifier circuit other than motor driver
				transistor.
13	ST, BY	L: 0.1V max	_	When this pin is grounded, all the circuitry stops operating. In this
		H : 2.0V min	Vcc }	case, the supply current is approximately 100µA. In the normal
			100k F	operation mode, this pin is left open or made to be at a potential of
				more than 2V.
			200	
			® 1 m	
			↑ ₹ ₹	
			יול <i>דול דול</i>	
18	ANGLE			The hall input-output gain (slope of motor waveform) can be changed
				by changing the resistance connected across this pin and GND.
			Vcc Vcc	≈ 10kΩ.
			J 1	
			 	
			® ↑	
			Tit	
40	D.D.	11.001		Die fee steering the mater
19	BR	H: 2.0V min	0	Pin for stopping the motor
		L : 0.8V max		L level : Motor drive (Less than 0.8V).
			5V §	H level : Motor stop (More than 2.0V).
			3	
			100k	
			▲ 100k孝	

Continued on next page.

Continued from preceding page.

Unit (resistance : Ω)

Pin No.	Pin Symbol	Pin Voltage	Equivalent Circuit	Pin Description
20	FRC	H : 2.8V min L : 1.2V max	5V 100k 100k 100k 100k 100k 100k 100k 100	Pin for forward/reverse control of motor. L level : Forward (Less than 1.2V). H level : Reverse (More than 2.8V).
21 22	VH [†] VH ⁻		vcc	Pin for supplying the hall bias current. A voltage of approximately 1V is developed across (V _H +) and (VH-).
23 24 25 26 27 28	U _{IN} 1 U _{IN} 2 V _{IN} 1 V _{IN} 2 W _{IN} 1 W _{IN} 2	1.4V min 2.8V max	3 200 8 200 8 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U phase hall element input pin. Logic "H" : UIN1>UIN2 V phase hall element input pin. Logic "H" : VIN1>VIN2 W phase hall element input pin. Logic "H" : WIN1>WIN2


Note) Pin 12 (NC pin) must be left open.

Sample Application Circuit

Unit (resistance: Ω , capacitance: F)

Output Voltage Waveform

$$\begin{array}{l} Upper\ overlap = & (2V\alpha - V_A - V_{XL}) \,/\, (V_A - V_{XL}) \times 100[\%] \\ Lower\ overlap = & (V_A + V_{XL} - 2V\beta) \,/\, (V_A - V_{XL}) \times 100[\%] \end{array}$$

1. Upper overlap

DC voltage of upper amplitude : V_S – V_{XH} = V_A

DC voltage of lower amplitude : V_{XL}

Let the DC voltage at the intersection of two phases of the upper waveform be $V\alpha$:

From the drawing shown above

At upper overlap amount=A/B×100[%]

$$A \ = \!\! V\alpha \!\! - \!\! 1/2(V_S \!\! - \!\! V_{XH} \!\! + \!\! V_{XL}) \!\! = \!\! V\alpha \!\! - \!\! 1/2(V_A \!\! + \!\! V_{XL})$$

$$B = (V_S - V_{XH}) - 1/2(V_S - V_{XH} + V_{XL}) = 1/2(V_A + V_{XL})$$

* Upper overlap

$$= \!\! (2V\alpha \!\!-\!\! V_A \!\!-\!\! V_{XL}) \, / \, (V_A \!\!-\!\! V_{XL}) \!\! \times \!\! 100[\%]$$

2. Lower overlap

DC voltage of upper amplitude : V_S – V_{XH} = V_A

DC voltage of lower amplitude : V_{XL}

Let the DC voltage at the intersection of two phases of the upper waveform be $V\beta$:

From the drawing shown above

At lower overlap amount=C/D×100[%]

$$C \ = 1/2 (V_S \! - \! V_{XH} \! + \! V_{XL}) \! - \! V\beta \! = \! 1/2 (V_A \! + \! V_{XL}) \! - \! V\beta$$

$$D = 1/2(V_S - V_{XH} + V_{XL}) - V_{XL} = 1/2(V_A - V_{XL})$$

* Lower overlap

$$=(V_A-V_{XL}-2V\beta)/(V_A-V_{XL})\times100[\%]$$

LB1619M

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2001. Specifications and information herein are subject to change without notice.