

LA3241

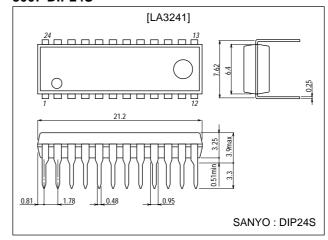
Preamplifier for Compact Cassette Recording-Only Use

Overview

The LA3241 is a preamp IC for compact cassette player recording-only use. The distinctive feature of the LA3241 is that it contains mechanical switches which have been so far connected externally as peripheral parts.

Applications

• Radio-cassette tape recorder/tape deck-use stereo compact cassette player.


Features

- Wide ALC : ALC_W=60dB typ.
- 2-step ALC level : ALC $_{Vo}$ =0.42V, 0.65V.
- On-chip electronic select switches permitting selection of normal/metal tape and normal/higher speed mode recording equalizer.
- On-chip mike amp: Gain 25dB typ fixed.
- Low-voltage operaton because the Schottky barrier diode is used for ALC rectifier diode.
- Wide operating voltage: V_{CC}=4.5 to 14.0V.

Package Dimensions

unit:mm

3067-DIP24S

Functions

Recording preamp ×2
Mike amp ×1
ALC ×1
Electronic switch ×6

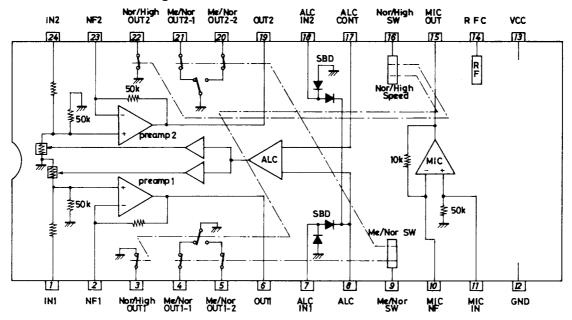
Specifications

Maximum Ratings at Ta = 25°C

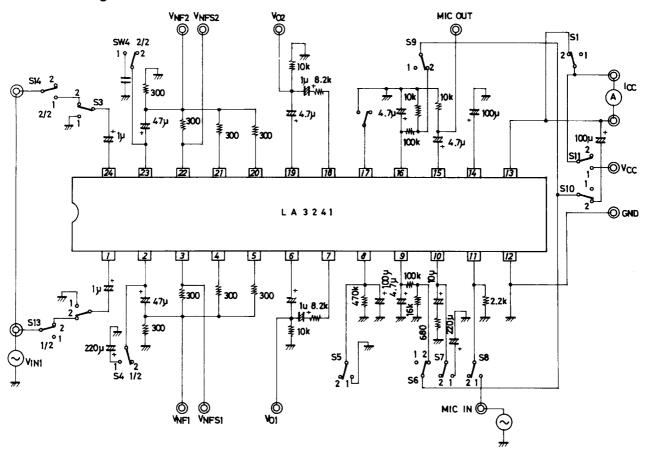
Parameter	Symbol	Conditions	Ratings	Unit
Maximum Supply Voltage	V _{CC} max		16	V
Allowable Power Dissipation	Pd max		720	mW
Operating Temperature	Topr		-20 to +75	°C
Storage Temperature	Tstg		-40 to +125	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LA3241

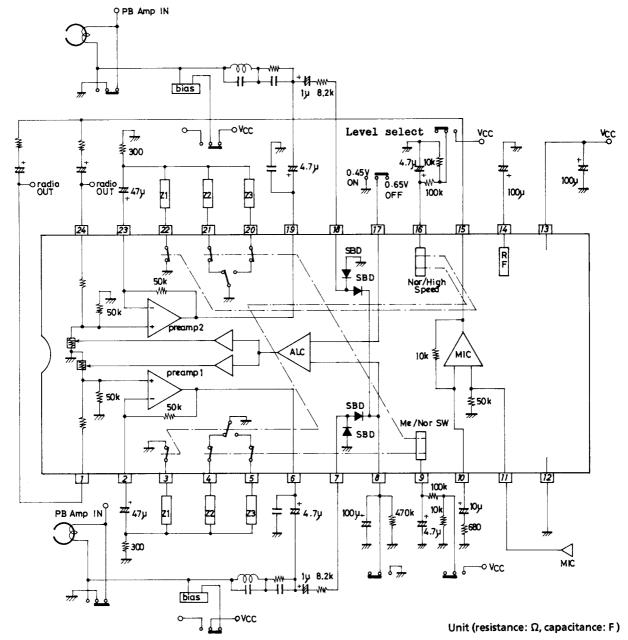

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended Supply Voltage	Vcc		6	V
Operating Voltage Range	V _{CC} op		4.5 to 14.0	V


Operating Characteristics at Ta = 25°C, V_{CC} =6V, R_L = $10k\Omega$, f=1kHz, 0dB=0.775V

Parameter	Symbol	Conditions	Ratings			Unit
	Symbol		min	typ	max	Unit
Quiescent Current	Icco	Me/Nor, Nor/High SW off	5	7.5	12	mA
Quiescent Current	lccs	Me/Nor, Nor/High SW on	12	16	20	mΑ
[REC Amp]						
Voltage Gain (Open)	VG _{O1}		75	85		dB
Voltage Gain (Closed)	VG1	V _O =0dBm	42.5	44.5	46.0	dB
Total Harmonic Distortion	THD1	V _O =0.4V		0.1	0.7	%
Maximum Output Voltage	V _O max	THD=1%	0.7	1.0		V
Equivalent Input Noise Voltage	V _{NI1}	Rg=2.2kΩ, BPF : 20Hz to 20kHz		1.1	1.7	μV
Input Resistance	R _{I1}		40	50	60	kΩ
Crosstalk	CT1	Between REC amps	50	60		dB
	CT2	REC amp → Mike amp	50	75		dB
Channel Balance	СВ	Vi=-50dBm		0	2	dB
[Mike Amp]	·					
Voltage Gain	VG _{O2}		40	50		dB
Voltage Gain	VG2	V _O =0dBm	23	25	27	dB
Total Harmonic Distortion	THD2	V _O =0.4V		0.1	0.7	V
Maximum Output Voltage	V _{O2}	THD=1%	0.8	1.1		V
Equivalent Input Noise Voltage	V _{NI2}	Rg=3.6kΩ, BPF : 20Hz to 20kHz		1.2	1.7	μV
Input Resistance	R _{I2}		40	50	60	kΩ
Crosstalk	CT3	Mike amp → REC amp	45	60		dB
[ALC]	·					
ALC Range	ALCW	Input range when output distortion becomes 1% aftrer ALC begins to be applied.	55	60		dB
ALC Balance	ALCB	Output difference between CH1 and CH2.		0	2	dB
ALC Distortion	ALC _{THD}	Vi=-40dBm		0.15	0.80	%
ALC Output Voltage	ALC _{Vo}	Vi=-40dBm, pin 17 Gnd	0.33	0.42	0.53	V
	ALCV ₀	Vi=-40dBm, pin 17 opem	0.56	0.65	0.76	V
Crosstalk	CT4	Between REC amps	45	60		dB
	CT5	REC amp → Mike amp	50	70		dB
[Switch]						
On-State Resistance	R _{on}			30	70	Ω
DC Feedback Resistance	R _{F1}		40	50	60	kΩ

Equivalent Circuit Block Diagram



Test Circuit Diagram

Unit (resistance: Ω , capacitance: F)

Sample Application Circuit

(Notes)

- 1. The electronic select switch level is approximately (VCC-0.9)/2.
- 2. REC amplifier NF parameters Z1 through Z3 should be selected to accommodate the recording level and frequency response that will be required in metal/normal tape and normal/higher speed modes.
- 3. Z1 through Z3 may be configured with coil "L", capacitor "C", and resistor "R".
- 4. The electronic select switch mode illustrated above shown no V_{CC} being impressed on Me/Nor SW9 or Nor/High SW10.
- 5. The ALC level on pin 7 should not be changed over while V_{CC} is impressed.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2000. Specifications and information herein are subject to change without notice.