

6-BIT VIDEO FREQUENCY DIGITAL CONTROLLED ATTENUATOR

ORDERING INFORMATION

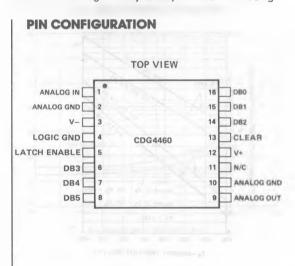
16-Pin Ceramic Package

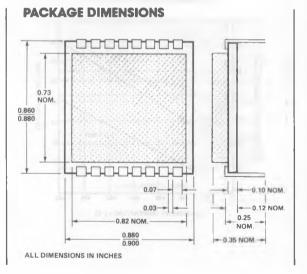
CDG4460J

FEATURES

- Data Latch
- Attenuation Range of 0 to 15.75dB
- Precise Attenuation, Selectable in 0.25dB steps
- Wide Frequency Range, up to 40MHz
- Wide Power Supply Range, ±6.0 to ±15V
- Lower Power Consumption, 0.5µW typ. with ±15V Power Supplies

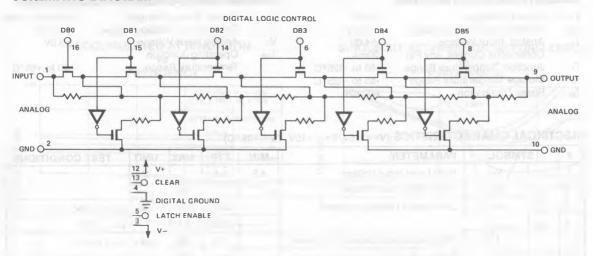
DESCRIPTION


CDG4460J remote controlled Video Attenuators feature Integrated Circuits with high OFF Isolation Lateral D-MOS FETs and low-power CMOS logic with data latches. CMOS/D-MOS ICs are mounted on ceramic substrates along with precision, trimmed resistors. A feature of this circuit is the ability to latch in the attenuator setting for easy microprocessor interfacing.


APPLICATIONS

- Video Attenuation
- Wide Band Amplifier Gain Control
- Variable Burst Generation
- IF Amplifier Attenuation
- Frequency Synthesizers

NOTE


All devices contain diodes to protect logic inputs against damage due to high static voltages or electric fields; however, it is advised that precautions be taken not to exceed maximum recommended logic or analog input voltages. All unused logic inputs must be connected to logic ground.

SCHEMATIC DIAGRAM

ATTENUATOR SETTING TABLE

Note: Examples only. Added attenuation can be set to any value between 0 and 15.75dB in 0.25dB steps.

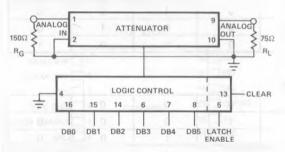
ADDED ATTENUATION	DATA BIT #—LOGIC SETTING								
(dB)	DB0	DB1	DB2	DB3	DB4	DB5			
0	0	0	0	0	0	0			
0.25	1	0	0	0	0	0			
0.50	0	1	0	0	0	0			
1.00	0	0	1	0	0	0			
2.00	0	0	0	1	0	0			
4.00	0	0	0	0	1	0			
8.00	0	0	0	0	0	1			

EXAMPLES OF OTHER ATTENUATION SETTINGS

0.75	1	1	0	0	0	0
1.75	1	1	1	0	0	0
3.75	1	1	1	1	0	0
7.75	1	1	1	1	1	0
15.25	1	0	1	1	1	1
15.75	1	1	1	1	1	1

ABSOLUTE MAXIMUM RATINGS

V-, V+	Supply Voltages	±20V
VIN	Control Input Voltage Range	V- to V+
VA	Analog Input Voltage	±4.0V
1	Continuous Current, any Pin	20mA
T_J	Junction Temperature Range	-55 to +125°C
Ta	Storage Temperature Range	-55 to +125°C
P_D	Power Dissipation	600mW


RECOMMENDED OPERATING CONDITIONS

RECO	MIMENDED OPERATING C	DUDITION2
V-, V+	Supply Voltage Ranges	±6.0V to ±15V
VIN	Control Input Voltage Range	0 to +5V
VA	Analog Input Voltage	±3.0V
TOP	Operating Junction	
	Temperature Range	-40 to +85°C

ELECTRICAL CHARACTERISTICS (V-=-15V, V+=+15V, TA=+25°C)

#	S	SYMBOL PARAMETER		PARAMETER		TYP	MAX	UNIT	TEST CONDITIONS
1		VIH	High Level Input Voltage		4.5	3.4		٧	
2	2	VIL	Low Level Input Voltage			and her	1.0	I LE	
3	ATI	IIN	Logic Input Le	ut Leakage Current	Verific	0.01	0.1	μΑ	V _{IN} = +5.0V
4	ST					0.02	0.1		V _{IN} = +15V
5	PENN	1-	Negative Supp	ly Quiescent Current		-0.5	-100	μΑ	V _{IN} = 0 or V+
6	I+ Positive Supply		y Quiescent Current		0.5	100			
7	U	200	Insertion Loss		ani	6.0		dB	$R_G = 150 \Omega$, $R_L = 75 \Omega$ Attenuation Setting=0dE
8	Z	tpD	Propagation	Data to Attn. Set	and a town or a	140	250	nS	V _{IN} = 5.0V
9	N	t _{PD} Propagation Delay t _S Set Up Time, D		Clear to Attn. Reset		100	220	110	Control of the Control
10	DY	ts	Set Up Time, Data to Latch Enable		150			nS	(63)
11	g e	tн	Hold Time Latch Enable to Data OFF		150			nS	

FUNCTIONAL BLOCK DIAGRAM

NOTES:

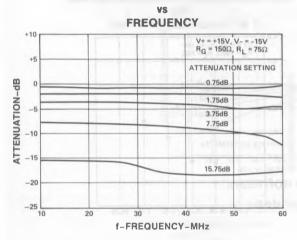
- Analog Input Ground (pin 2) and Analog Output Ground (pin 10) must be connected to a common point.
- Logic Ground (pin 4) must be isolated from Analog Ground (pins 2 & 10).

TRUTH TABLE

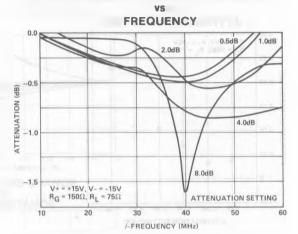
LATCH ENABLE	CLEAR	ATTENUATOR
0	0	Holds data pattern already set.
x	1	Sets all data bits high-max. attenuation
1	0	Latch transparent, attenuation per setting

x = don't care, Logic '0' \leq 1.0V, Logic '1' \geq 4.5V

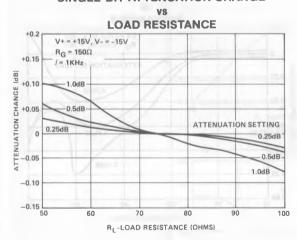
LATCH DATA


If Clear is High (Logic '1' on pin 13) all Data Bits are set to logic '1' for maximum attenuation.

If Latch Enable is High (logic '1' on pin 5) then Latch is transparent.



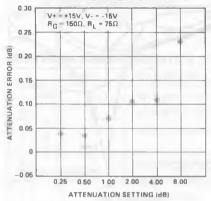
TYPICAL PERFORMANCE CHARACTERISTICS (TA = +25°C)


ACCUMULATED ATTENUATION

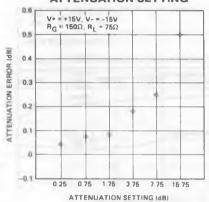
SINGLE-BIT ATTENUATION SETTING ERROR

SINGLE-BIT ATTENUATION CHANGE

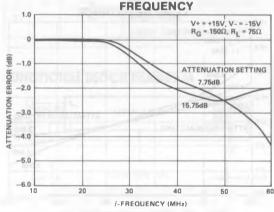
SINGLE-BIT ATTENUATION CHANGE


NOTE— Attenuation settings are normalized to exclude insertion loss in all curves.

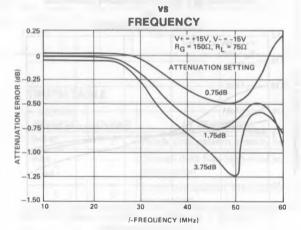
TYPICAL PERFORMANCE CHARACTERISTICS (TA = +25°C)


SINGLE-BIT ATTENUATION ERROR

ATTENUATION SETTING

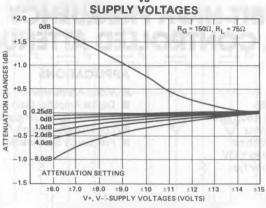

ACCUMULATED ATTENUATION ERROR

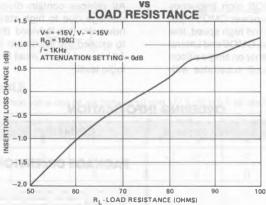
ATTENUATION SETTING



ACCUMULATED ATTENUATION ERROR

VS


ACCUMULATED ATTENUATION ERROR



TYPICAL PERFORMANCE CHARACTERISTICS (T_A = +25°C)

SINGLE-BIT ATTENUATION CHANGES

INSERTION LOSS CHANGE

INPUT IMPEDANCE VS FREQUENCY 180 V+ = +15V, V- = -15V RL = 75Ω 140 ATTENUATION SETTING = 0dB 100 60 40

20

10

/-FREQUENCY (MHz)

40