

CDCI6214

SNAS734B -JULY 2017-REVISED APRIL 2018

CDCI6214 Ultra-Low Power Clock Generator With PCIe Gen4 Support, Four Programmable Outputs and EEPROM

Features

- One Configurable High Performance, Low-Power PLL With 4 Programmable Outputs
- RMS Jitter Performance
 - Supports PCle Gen1 / Gen2 / Gen3 / Gen4 (typ. 386 fs)
- Typical Power Consumption: 150 mW at 1.8 V⁽²⁾
- Universal Clock Input
 - Differential AC-Coupled or LVCMOS: 1 MHz to 250 MHz
 - Crystal: 8 MHz to 50 MHz
- Flexible Output Frequencies
 - 44.1 kHz to 350 MHz
 - Glitch-Less Output Divider Switching
 - Spread Spectrum Clocking (SSC) for PCIe
- Four Individually Configurable Outputs
 - LVCMOS, LVDS or HCSL
 - Differential AC-Coupled With Programmable Swing (LVDS-, CML-, LVPECL-Compatible)
- Fully Integrated PLL, Configurable Loop Bandwidth: 100 kHz to 3 MHz
- Single or Mixed Supply Operation for Level Translation: 1.8 V, 2.5 V and 3.3 V
- Configurable GPIOs
 - Status Signals
 - Up to 4 Individual Output Enables
 - Output Divider Synchronization
- Flexible Configuration Options
 - I²C-Compatible Interface: Up to 400 kHz
 - Integrated EEPROM With Two Pages and External Select Pin
- Industrial Temperature Range: -40°C to 85°C
- Small Footprint: 24-Pin VQFN (4 mm × 4 mm)

Applications

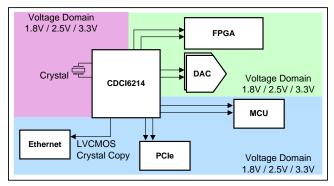
- PCIe Gen 1/2/3/4 clocking
- 1G / 10G Ethernet Switches, NIC, Accelerators
- Test & Measurement, Handheld Equipment
- **Multi-Function Printers**
- **Broadcast Infrastructure**
- Servers

3 Description

The CDCI6214 device is an ultra-low power clock generator. The device selects between independent reference inputs to a phase-locked loop and generates up to four different frequencies on configurable differential output channels and also a copy of the reference clock on a LVCMOS output channel.

Each of the four output channels has a configurable integer / fractional output divider and a dedicated integer divider. Together with the output muxes, this allows up to five different frequencies. Clock distribution dividers are reset in a deterministic way for clean clock gating and glitch-less update capability. Flexible power-down options allow to optimize the device for lowest power consumption in active and standby operation. Typically four 156.25 MHz LVDS outputs consume 150 mW at 1.8V. Typical RMS jitter of 386 fs for 100 MHz HCSL output enhances system margin for PCIe applications.

The CDCI6214 is configured using internal registers that are accessed by an I²C-compatible serial interface and internal EEPROM.


The CDCl6214 enables high-performance clock trees from a single reference at ultra-low power with a small footprint. The factory- and user-programmable EEPROM make the CDCI6214 ideal as easy-to-use. instant-on clocking solution with consumption.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CDCI6214	VQFN (24)	4.00 mm × 4.00 mm

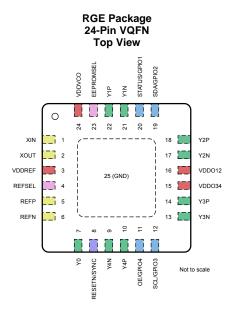
- (1) For all available packages, see the orderable addendum at the end of the data sheet.
- (2) Four LVDS outputs, 156.25 MHz with crystal reference.

Application Example CDCI6214

Copyright © 2017, Texas Instruments Incorporated

Table of Contents

			2	
	Features 1		6.23 Timing Requirements, I ² C-Compatible Serial	40
2	Applications 1		Interface (SDA/GPIO2, SCL/GPIO3)	
3	Description 1		6.24 Power Supply Characteristics	
Ļ	Revision History2	_	6.25 Typical Characteristics	
5	Pin Configuration and Functions3	7	Parameter Measurement Information	
5	Specifications 4	_	7.1 Parameters	
	6.1 Absolute Maximum Ratings 4	8	Detailed Description	
	6.2 ESD Ratings		8.1 Overview	
	6.3 Recommended Operating Conditions 4		8.2 Functional Block Diagram	
	6.4 Thermal Information		8.3 Feature Description	
	6.5 EEPROM Characteristics		8.4 Device Functional Modes	
	6.6 Reference Input, Single Ended and Differential Mode		8.5 Programming	
	Characteristics (REFP, REFN, XIN, XOUT)5		8.6 Register Maps	
	6.7 Reference input, Crystal Mode Characteristics (Aliv,	9	Application and Implementation	
	XOUT)5		9.1 Application Information	
	6.8 General Purpose Input and Output Characteristics		9.2 Typical Applications	
	(GPIO[4:1], SYNC/RESETN)		9.3 Do's and Don'ts	
	6.9 Triple Level Input Characteristics (EEPROMSEL, REFSEL)		9.4 Initialization Setup	
	6.10 Reference Mux Characteristics	10	Power Supply Recommendations	
	6.11 Phase Locked Loop Characteristics		10.1 Power-Up Sequence	
	6.12 Closed Loop Output Jitter Characteristics		10.2 De-Coupling	95
	6.13 PCIe Spread Spectrum Generator	11	Layout	95
	6.14 Output Mux Characteristics		11.1 Layout Guidelines	95
	6.15 LVCMOS Output Characteristics		11.2 Layout Examples	95
	6.16 HCSL Output Characteristics	12	Device and Documentation Support	97
	6.17 LVDS DC-Coupled Output Characteristics 8		12.1 Device Support	97
	6.18 Programmable Differential AC-Coupled Output		12.2 Receiving Notification of Documentation Update	es <mark>97</mark>
	Characteristics9		12.3 Community Resources	97
	6.19 Output Skew and Delay Characteristics9		12.4 Trademarks	97
	6.20 Output Synchronization Characteristics9		12.5 Electrostatic Discharge Caution	97
	6.21 Timing Characteristics		12.6 Glossary	97
	•	13	Mechanical, Packaging, and Orderable	
	(SDA/GPIO2, SCL/GPIO3) 10		Information	97


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	changes from Revision A (October 2017) to Revision B	Page
•	Changed pinout pins 5 and 6 from NC to REFP, REFN inputs	3
•	Changed supply voltage maximum from: 3.6 V to: 3.65 V	4
<u>•</u>	Removed Skew between HCSL maximum from the Output Skew and Delay Characteristics table	g
С	hanges from Original (July 2017) to Revision A	Page
•	Changed device status from Advanced Info to Production Data	1

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
XIN	1	I	Reference / Crystal Input	
XOUT	2	Ю	Reference / Crystal Driver Output	
VDDREF	3	Р	Power Supply Pin for Input Path, Digital and EEPROM	
REFSEL	4	I	Manual Reference Selection MUX for PLL, R_{PU} = 50 k Ω , R_{PD} = 50 k Ω	
REFP	5	I	Differential Positive Reference	
REFN	6	I	Differential Negative Reference	
Y0	7	0	Output 0 Pin	
RESETN/SYNC	8	I	hip Reset. Alternatively, Output Divider Sync, $R_{PU} = 50 \text{ k}\Omega^{(1)}$	
Y4N	9	0	Output 4 Negative Pin	
Y4P	10	0	Output 4 Positive Pin	
OE/GPIO4	11	Ю	Global output enable (default) or programmable GPIO, R_{PU} = 50 $k\Omega^{(1)}$	
SCL/GPIO3	12	Ю	Serial interface clock (default) or programmable GPIO	
Y3N	13	0	Output 3 Negative Pin	
Y3P	14	0	Output 3 Positive Pin	
VDDO34	15	Р	Power Supply for Outputs 3 and 4	
VDDO12	16	Р	Power Supply for Outputs 1 and 2	
Y2N	17	0	Output 2 Negative Pin	
Y2P	18	0	Output 2 Positive Pin	
SDA/GPIO2	19	Ю	Serial interface data (default) or programmable GPIO	
STATUS/GPIO1	20	Ю	Status (default) or programmable GPIO, R_{PU} = 50 $k\Omega^{(1)}$	
Y1N	21	0	Output 1 Negative Pin	
Y1P	22	0	Output 1 Positive Pin	
EEPROMSEL	23	I	EEPROM Page Mode Select, R_{PU} = 50 k Ω , R_{PD} = 50 k $\Omega^{(1)}$	
VDDVCO	24	Р	Power Supply Pin for VCO / PLL	
GND	25	G	Ground, Thermal Pad	

⁽¹⁾ R_{PU} is an internal pullup resistor. R_{PD} is an internal pulldown resistor.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
VDDREF, VDDVCO, VDDO12, VDDO34	Supply Voltage	-0.3	3.65	V
XIN, XOUT, REFP, REFN	Input Voltage	-0.3	VDDREF + 0.3	V
STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4, REFSEL, EEPROMSEL, RESETN/SYNC	Input Voltage	-0.3	VDDREF + 0.3	V
Y0, Y1P, Y1N, Y2P, Y2N, Y3P, Y3N, Y4P, Y4N	Output Voltage	-0.3	VDDO_x + 0.3	V
STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4	Output Voltage	-0.3	VDDREF + 0.3	V
TJ	Junction Temperature		125	°C
T _{stg}	Storage temperature		150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VDDVCO	Core supply voltage	1.71	3.465	V
VDDO1	Output supply voltage	1.71	3.465	V
VDDO2	Output supply voltage	1.71	3.465	V
VDDO3	Output supply voltage	1.71	3.465	V
VDDO4	Output supply voltage	1.71	3.465	V
T_A	Ambient temperature	-40	85	°C

6.4 Thermal Information

		CDCI6214	
	THERMAL METRIC ⁽¹⁾	RGE (VQFN)	UNIT
		24 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	39.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	16.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	2.6	°C/W
ΨJΤ	Junction-to-top characterization parameter	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	16.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 EEPROM Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
n _{EEcyc}	EEPROM programming cycles	each word	10	10,000	cycles
t _{EEret}	EEPROM data retention		10		years

6.6 Reference Input, Single Ended and Differential Mode Characteristics (REFP, REFN, XIN, XOUT)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP M	AΧ	UNIT
f _{IN_Ref}	Reference frequency		1	2	50	MHz
V_{IH}	Input high voltage	LVCMOS input buffer	0.8 · VDDREF			V
V _{IL}	Input low voltage	LVCMOS input buffer		0. VDDR	2 · EF	V
V _{IN_DIFF}	Differential input voltage swing, peak-to-peak	VDDREF=2.5V or 3.3V, AC-coupled differential input buffer	0.5	,	1.6	V
V _{IN_DIFF}	Differential input voltage swing, peak-to-peak	VDDREF=1.8V, AC-coupled differential input buffer	0.5		1.0	V
dV _{IN} /dT	Input slew rate	20% - 80%	3			V/ns
IDC	Input duty cycle		40		60	%
C _{IN_XIN}	Input capacitance	No xtal active, on-chip load disabled, at 25°C		7		pF
C _{IN_XOUT}	Input capacitance	No xtal active, on-chip load disabled, at 25°C		5		pF
C _{IN_REF}	Input capacitance	at 25°C		5		pF

6.7 Reference Input, Crystal Mode Characteristics (XIN, XOUT)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{IN_Xtal}	Crystal frequency	Fundamental mode	8		50	MHz
Z _{ESR}	Crystal equivalent series resistance	A supported crystal is within	30		100	Ω
C _L	Crystal load capacitance	using on-chip load capacitance a supported crystal is within	5		8	pF
P _{XTAL}	Crystal tolerated drive power	A supported crystal tolerates up to	100			uW
C _{XIN_LOAD}	On-Chip load capacitance	Programmable in typ. 200 fF steps at room temp	3		9.1	pF
DNL _{XIN_LO}	Differential non-linearity	at room temp		200		fF

6.8 General Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	Input high voltage		0.8 · VDDREF			V
V _{IL}	Input low voltage				0.2 · VDDREF	V
I _{IH}	Input high level current	VIH = VDDREF		-0.02		μΑ
I _{IH}	Input high level current	VIH = VDDREF, Pin 12, 19		0.004		μА
I _{IL}	Input low level current	VIL = GND		-50		μΑ
I _{IL}	Input low level current	VIL = GND, Pin 12, 19		-0.004		μΑ
dV _{IN} /dT	Input slew rate	20% - 80%	0.5			V/ns
C _{IN_GPIO}	Input Capacitance				10	pF

General Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN) (continued)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{OH}	Output high voltage	only capacitive load	0.8 · VDDREF		V
V _{OL}	Output low voltage	only capacitive load		0.2 · VDDREF	V
dV _{OUT} /dT	Output slew rate	20% - 80%, at 10pF		0.3	V/ns
R _{PU}	Pull-up resistance	Pin 11, 20		77	kΩ

6.9 Triple Level Input Characteristics (EEPROMSEL, REFSEL)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and T_A = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IH}	Input high voltage		0.8 · VDDREF			V
V _{IM}	Input mid voltage		0.41 · VDDREF	0.5 · VDDREF	0.58 · VDDREF	V
V _{IL}	Input low voltage				0.2 · VDDREF	V
I _{IH}	Input high level current	VIH = VDDREF		40		μΑ
I _{IM}	Input mid level current	VIH = VDDREF/2		-1		μΑ
I _{IL}	Input low level current	VIL = GND		-40		μΑ
t _{RIN}	input slew rate	10% - 90%	50			ns
C _{IN_TRI}		_			10	pF
R _{PDPU}				64		kΩ

6.10 Reference Mux Characteristics(1)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L _{REF_MUX}	Reference mux isolation	XIN = Crystal 25 MHz, REF = 27 MHz		89		dBc
L _{REF_MUX}	Reference mux isolation	XIN = Crystal 25 MHz, REF = 24.576 MHz		78		dBc

⁽¹⁾ Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number.

6.11 Phase Locked Loop Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{PFD}	Phase Detector Frequency		1		100	MHz
f _{VCO}	Voltage Controlled Oscillator Frequency		2400		2800	MHz
f _{BW}	Configurable closed-loop PLL Bandwidth	REF = 25 MHz	100		3000	kHz
f _{CLKDIST}	Clock Distribution Frequency		400		700	MHz
K _{VCO}	Voltage Controlled Oscillator Gain	f _{VCO} = 2.4 GHz		62		MHz/V
K _{VCO}	Voltage Controlled Oscillator Gain	f _{VCO} = 2.5 GHz		62		MHz/V
K _{VCO}	Voltage Controlled Oscillator Gain	f _{VCO} = 2.8 GHz		92		MHz/V
ΔT _{CL}	Allowable Temperature Drift for Continuous Lock	dT/dt ≤ 20 K / min			125	°C

6.12 Closed Loop Output Jitter Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{RJ_CL}	RMS Phase Jitter	int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, Yx = 156.25 MHz LVDS		500	750	fs
t _{RJ_CL}	RMS Phase Jitter	int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, Yx = 100 MHz HCSL		386	800	fs
t _{RJ_CL}	RMS Phase Jitter	PCIe Gen 3/4 Common Clock transfer functions applied, XIN = Crystal 25 MHz, Yx = 100 MHz HCSL			500	fs
t _{RJ_CL}	RMS Phase Jitter	int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, VCO = 2500 MHz, Fractional Divider , Y1 =122.88 MHz LVDS		2		ps

6.13 PCIe Spread Spectrum Generator

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C, f_{VCO}=2.4 GHz, ch[4:1]_iod_mux = 2, ch[4:1]_iod

=3, ch[4:1]_ssc_counter=4, ch[4:1]_ssc_fmod=1, ch[4:1]_ssc_type=1, ch[4:1]_ssc_spread=0

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SSC}	SSC deviation			31.25		kHz
t _{SSC_FREQ_}	SSC deviation			-0.5		%
DEVIATION						

6.14 Output Mux Characteristics(1)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L _{OUT_MUX}	Output mux isolation	REF=27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB=4, Y_ODD = 312.5 MHz, Y_EVEN = 208.3 MHz, LVPECL		65		dBc
L _{OUT_MUX}	Output mux isolation	REF=27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB=4, Y_ODD = 312.5 MHz, Y_EVEN = 250 MHz, LVPECL		63		dBc
L _{OUT_MUX}	Output mux isolation	REF=27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB=4, Y_ODD = 312.5 MHz, Y_EVEN = 89.3 MHz, LVPECL		72		dBc
L _{OUT_MUX}	Output mux isolation	REF=27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB=4, IODs = 312.5 MHz, Yx=BYPASS (XIN), LVPECL		64		dBc
L _{OUT_MUX}	Output mux isolation	REF=27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB=4, Y_ODD = 100 MHz, Y_EVEN = 266.6 MHz, LVPECL		57		dBc

⁽¹⁾ Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number.

6.15 LVCMOS Output Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{O_LVCMOS}	Output frequency	VDDO_x=2.5V or 3.3V, normal drive	0.1		350	MHz
f _{O_LVCMOS}	Output frequency	VDDO_x=1.8V, normal drive	0.1		250	MHz
V _{OH_LVCMO}	Output high voltage	Normal mode, only capacitive load	0.8 · VDDREF			V

LVCMOS Output Characteristics (continued)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	PARAIVIETER	TEST CONDITIONS	IVIIIN	ITP	WAX	UNIT
V _{OL_LVCMO} s	Output low voltage	Normal mode, only capacitive load		,	0.2 · VDDREF	V
V _{OH_LVCMO}	Output high voltage	slow mode, only capacitive load	0.7 · VDDREF			V
V _{OL_LVCMO}	Output low voltage	slow mode, only capacitive load		,	0.3 · VDDREF	V
R _{ON_LVCMO}	Output impedance	Normal mode		28		Ω
R _{ON_LVCMO}	Output impedance	Weak mode		80		Ω
L _{LVCMOS_10}	Phase noise floor, single side band	f _{CARRIER} =100MHz, f _{OFFSET} =10MHz		-148		dBc/Hz

6.16 HCSL Output Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fo_HCSL	Output frequency		0.1		350	MHz
V _{CM_HCSL}	Output common mode		0.2	0.34	0.55	V
V _{OD}	Differential output voltage	f _{O_HCSL} =100 MHz	0.4		1.0	V
V_{SS}	Differential output voltage, peak to peak	f _{O_HCSL} =100 MHz	0.8		2.0	Vpp
V _{CROSS}	Absolute crossing point	R_p =49.9 Ω ±5%, f_{O_HCSL} =100 MHz	250		550	mV
ΔV_{CROSS}	Relative crossing point variation	w.r.t to average crossing point, f _{O_HCSL} =100 MHz		100		mV
dV/dt	Slew rate for rising and falling edge	differential, at V _{CROSS} +/-150 mV, f _{O_HCSL} =100 MHz ⁽¹⁾	1		4	V/ns
∆dV/dt	Slew rate matching	single ended, at V _{CROSS} +/-75 mV, f _{O_HCSL} =100 MHz ⁽¹⁾			20	%
ODC	Output duty cycle	Not in PLL bypass mode	45		55	%
R _P	Parallel termination	R_p = 49.9 Ω ±5% required	45		55	Ω
L _{HCSL_100M}	Phase noise floor, single side band	f _{CARRIER} = 100 MHz, f _{OFFSET} = 10 MHz		-152		dBc/Hz

⁽¹⁾ PCIe test load slew rate

6.17 LVDS DC-Coupled Output Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{O_PRG_AC}	Output frequency		0.1		350	MHz
V _{CM}	Output common mode	VDDO_X = 2.5V, 3.3V, chx_lvds_cmtrim_inc=2	1.125	1.2	1.375	V
V _{CM}	Output common mode	VDDO_X = 1.8V, chx_lvds_cmtrim_inc=2	0.8	0.9	1.0	V
V _{OD}	Differential output voltage	LVDS	0.25	0.3	0.45	V
t _{RF}	Output rise/fall times	LVDS (20% to 80%)		675		ps
ODC	Output duty cycle	Not in PLL bypass mode	45		55	%
L _{LVDS_DC_1}	Phase noise floor, single side band	f _{CARRIER} =100MHz, f _{OFFSET} =10MHz		-152		dBc/Hz

6.18 Programmable Differential AC-Coupled Output Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C and AC-coupled outputs

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{O_PRG_AC}	Output frequency		0.1		350	MHz
V_{OD}	Differential output voltage	LVDS-like		0.45		V
V_{OD}	Differential output voltage	CML-like		0.8		V
V_{OD}	Differential output voltage	LVPECL-like		0.9		V
t _{RF}	Output rise/fall times	LVDS-like (20% to 80%)		675		ps
t _{RF}	Output rise/fall times	CML-like (20% to 80%)		520		ps
t _{RF}	Output rise/fall times	LVPECL-like (20% to 80%)		500		ps
ODC	Output duty cycle	Not in PLL bypass mode	45		55	%
L _{DIFF_AC_10}	Phase noise floor, single side band	f _{CARRIER} =100MHz, f _{OFFSET} =10MHz		-152		dBc/Hz

6.19 Output Skew and Delay Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _{SK_HCSL}	Skew between HCSL	Y[4:1] = HCSL, f _{OY[4:1]} =100 MHz		140		ps
t _{SK_DIFFAC}	Skew between progr. differential AC	Y[4:1] = programmable output swing, f _{OY[4:1]} =100 MHz		150		ps
t _{SK_LVCMOS}	Skew between LVCMOS	$Y[4:1] = LVCMOS, f_{OY[4:1]}=100 MHz$		100		ps
t _{SK_LVCMOS}	Skew between LVCMOS to Bypass	Y[4:0] = LVCMOS, f _{OY[4:0]} =100 MHz		3		ns
t _{PD_ZDM}	Propagation Delay	REF=67 MHz, VCO = 2680 MHz, PSFB=4, PSA _{Y_ODD} =4, PSB _{Y_EVEN} =4, IOD _{Y_ODD} =10, IOD _{Y_EVEN} =10, Y _{P_ODD} =Y _{N_ODD} =IOD, in ext. ZDM, LVCMOS	-600		600	ps

6.20 Output Synchronization Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SU_SYNC}	Setup time SYNC pulse	with respect to PLL reference rising edge at 100 MHz with R=1	3			ns
t _{H_SYNC}	Hold time SYNC pulse	with respect to PLL reference rising edge at 100 MHz with R=1			3	ns
t _{PWH_SYNC}	High pulse width for SYNC	with R=1, at least 2 PFD periods + 24 feedback pre-scaler periods	60			ns
t _{PWL_SYNC}	Low pulse width for SYNC	with R=1, at least 1 PFD period	6			ns
t _{EN}	Individual output enable time ⁽¹⁾	tri-state to first rising edge, f _{Y[4:1]} < 200 MHz		4		nCK
t _{DIS}	Individual output disable time ⁽¹⁾	last falling edge to tri-state, f _{Y[4:1]} < 200 MHz		4		nCK

⁽¹⁾ Output clock cycles of respective output channel. Global output enable handled by digital logic, additional propagation will be added.

6.21 Timing Characteristics

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and T_A = -40°C to 85°C

	-,		A			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{INIT}	Initialization time	initialization time from POR to device releasing PLL outputs.			5	ms
t_{VDD}	Power supply ramp	timing requirement for any VDD pin while RESETN=LOW	50		2000	μs

6.22 I²C-Compatible Serial Interface Characteristics (SDA/GPIO2, SCL/GPIO3)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{IH}	Input Voltage, Logic High		0.7 · VDDREF		V
V _{IL}	Input Voltage, Logic Low			0.3 · VDDREF	V
V _{HYS}	Input Schmitt Trigger Hysteresis	VDDREF=3.3V, f _{SCL} =400kHz	156		mV
V _{HYS}	Input Schmitt Trigger Hysteresis	VDDREF=2.5V, f _{SCL} =400kHz	118		mV
V_{HYS}	Input Schmitt Trigger Hysteresis	VDDREF=1.8V, f _{SCL} =400kHz	85		mV
I _{IH}	Input Leakage Current	VDDREF=0.17V3.12V	-10	10	μΑ
V _{OL}	Low Level Output Voltage	at 3mA sink current, VDDREF=3.3V-5%		0.4	V
V _{OL}	Low Level Output Voltage	at 3mA sink current, VDDREF=2.5V-5%		0.4	V
V _{OL}	Low Level Output Voltage	at 2mA sink current, VDDREF=1.8V-5%		0.342	V
I _{OL}	Low Level Output Current	V _{OL} =0.4V	3		mA
C _{IN}	Input Capacitance			10	pF

6.23 Timing Requirements, I²C-Compatible Serial Interface (SDA/GPIO2, SCL/GPIO3)

VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PW_G}	Pulse Width of Suppressed Glitches				50	ns
f _{SCL}	SCL Clock Frequency	Standard		100		kHz
f _{SCL}	SCL Clock Frequency	Fast-mode		400		kHz
t _{SU_STA}	Setup Time Start Condition	SCL=V _{IH} before SDA=V _{IL}		0.6		μS
t _{H_STA}	Hold Time Start Condition	SCL=V _{IL} after SCL=V _{IL} After this time, the first clock edge is generated.		0.6		μS
t _{SU_SDA}	Setup Time Data	SDA valid after SCL=V _{IL} , f _{SCL} =100kHz	250			ns
t _{SU_SDA}	Setup Time Data	SDA valid after SCL=V _{IL} , f _{SCL} =400kHz	100			ns
t _{H_SDA}	Hold Time Data ⁽¹⁾	SDA valid before SCL=V _{IH}	0 ⁽²⁾			⁽³⁾ μs
t _{PWH_SCL}	Pulse Width High, SCL	f _{SCL} =100kHz	4.0			μS
t _{PWH_SCL}	Pulse Width High, SCL	f _{SCL} =400kHz	0.6			μS
t _{PWL_SCL}	Pulse Width Low, SCL	f _{SCL} =100kHz	4.7			μS
t _{PWL_SCL}	Pulse Width Low, SCL	f _{SCL} =400kHz	1.3			μS
t _{OF}	Output Fall Time	C _{OUT} =10400pF			250	ns

⁽¹⁾ t_{H_SDA} is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge. use own words

6.24 Power Supply Characteristics

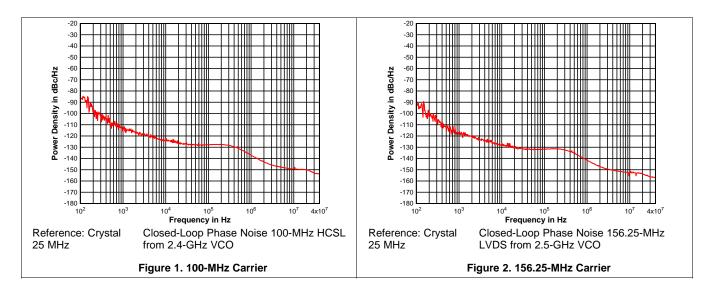
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = -40°C to 85°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{DD_REF}	Reference input current	DBL=on		4		mA
I _{DD_XIN}	Crystal input current	Crystal with P _{max} =200μW		2		mA

⁽²⁾ A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH(min)} of the SCL signal) to bridge the undefined region of the falling edge of SCL. use own words

⁽³⁾ The maximum t_{H_SDA} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode, but must be less than the maximum of t_{VD_SDA} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{PWL_SCL}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. use own words

Power Supply Characteristics (continued)


VDDVCO, VDDO12, VDDO34, VDDREF = 1.8V \pm 5%, 2.5V \pm 5%, 3.3V \pm 5% and TA = -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
I _{DD_VCO}	VCO and PLL current	f _{VCO} =2500MHz, PSFB=PSA=4 and PSB=off	13		mA
I _{DD_OUT}	Output channel current	activated output channel, 1x LVDS 156.25 MHz	10		mA
I_{DD_IOD}	Output integer divider current		2		mA
I _{DD_FOD}	Output fractional divider current		20		mA
I _{DD_PDN}	Power down current	using reset pin / bits	3		mA
I _{DD_TYP}	Typical current	4x 156.25 MHz LVDS case using crystal input and doubler	83		mA
I _{DD_TYP}	Typical current	2x IODs LVDS/LVCMOS, 1x FOD LVDS	72		mA
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f _{INJ} =10kHz,	-56		dBc
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f _{INJ} =100kHz	-46		dBc
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f _{INJ} =1MHz	-49		dBc
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f_{INJ} =10MHz	-69		dBc
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f _{INJ} =20MHz	-74		dBc
L _{PSNR}	Power supply noise rejection ⁽¹⁾	Yx=100MHz LVDS, on one of VDDx injected sine wave 50 mV at f _{INJ} =40MHz	-73		dBc

⁽¹⁾ dBc with respect to output carrier frequency.

6.25 Typical Characteristics

VDDx = 1.8 V at room temperature

7 Parameter Measurement Information

7.1 Parameters

7.1.1 Reference Inputs

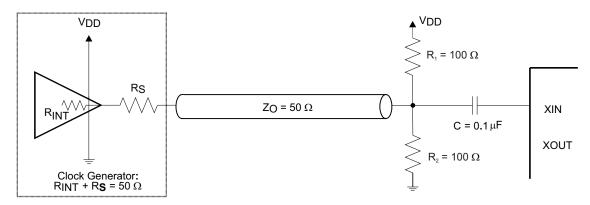
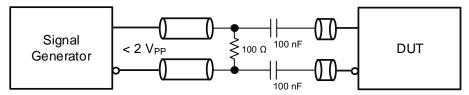



Figure 3. Single-Ended LVCMOS Crystal Input

(1) Applied signal has to stay within $V_{\mbox{\scriptsize IN_DIFF}}$ limits.

Figure 4. Differential AC-Coupled Input

7.1.2 **GPIOs**

7.1.3 Outputs

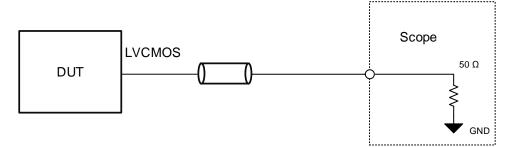


Figure 5. LVCMOS Output

Copyright © 2017–2018, Texas Instruments Incorporated Product Folder Links: *CDCI6214*

Parameters (continued)

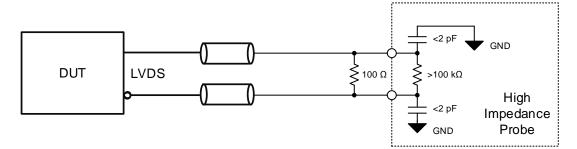


Figure 6. LVDS Output, DC-Coupled

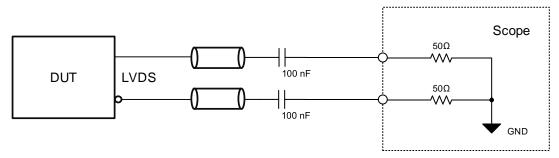


Figure 7. LVDS Output AC-Coupled

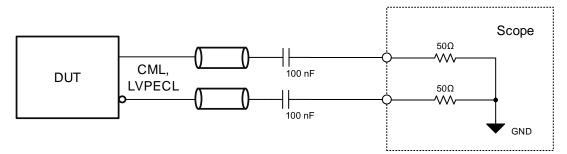


Figure 8. Differential AC-Coupled (CML, LVPECL)

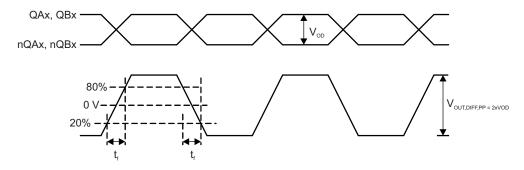
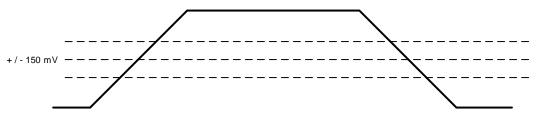



Figure 9. Differential Output Voltage and Rise/Fall Time

Parameters (continued)

Differential Waveform HCSL

- (1) Differential waveform created using math function in scope subtracting positive from negative output pin waveform: YxP YxN.
- (2) Slew rate measured using absolute ± 150 mV on the differential waveform. This correlates to the cross-point of the single ended positive and negative waveform.

Figure 10. HCSL, Differential Rise and Fall Time

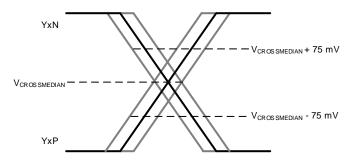
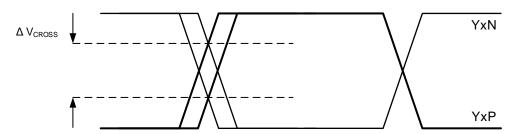



Figure 11. HCSL, Slew Rate Variation

(1) Measurement conducted using the single ended waveforms. Total variation of the crossing point of rising YxP and falling YxN edges.

Figure 12. HCSL, Delta Crossing Voltage

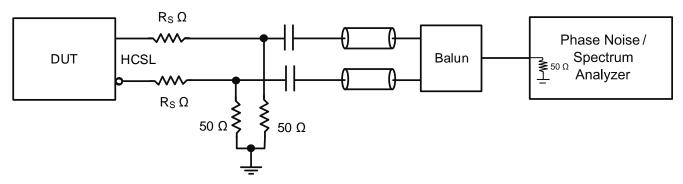


Figure 13. HCSL, Phase Noise Measurement

Parameters (continued)

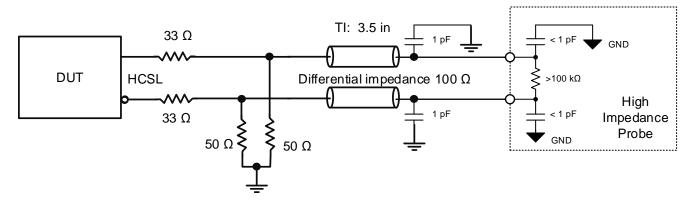


Figure 14. HCSL PCIe Test Load Setup

7.1.4 Serial Interface

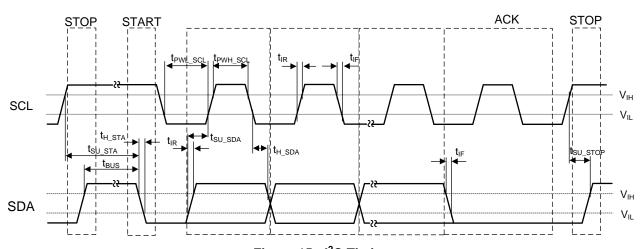


Figure 15. I²C Timing

7.1.5 Power Supply

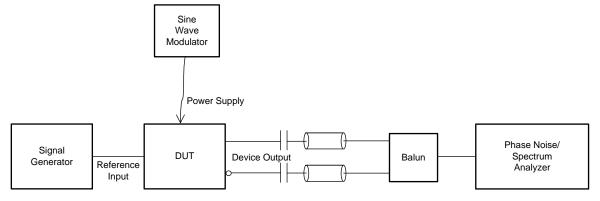


Figure 16. PSNR Setup

Product Folder Links: CDCI6214

Copyright © 2017-2018, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The CDCl6214 clock generator is a phase-locked loop with integrated loop filter and selectable input reference. The output of the integrated voltage-controlled oscillator (VCO) is connected to a clock distribution network, which includes multiple frequency dividers and feeds four output channels with configurable differential and single-ended output buffers.

8.2 Functional Block Diagram

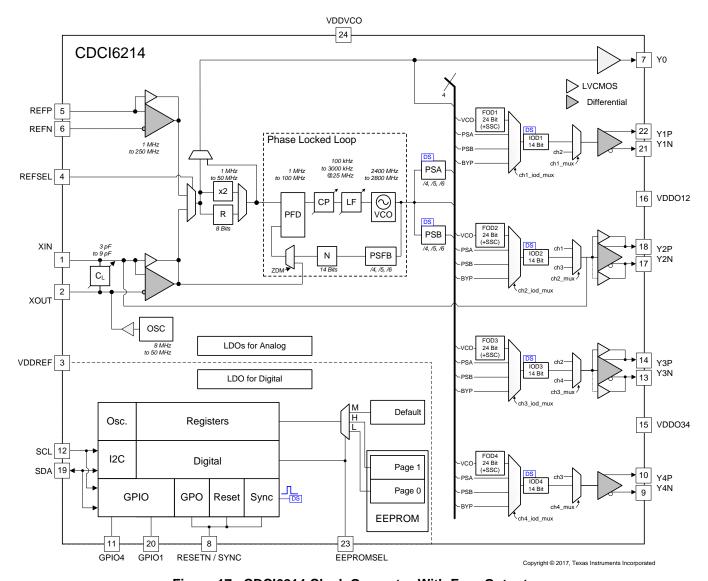


Figure 17. CDCI6214 Clock Generator With Four Outputs

8.3 Feature Description

The following sections describe the individual blocks of the CDCl6214 ultra-low power clock generator.

8.3.1 Reference Block

A reference clock to the PLL is fed to pins 1 (XIN) and 2 (XOUT) or to pins 5 (REFP) and 6 (REFN). There are multiple input stages available to adapt to many clock references. The bit-fields that control the reference input type selection are xin_inbuf_ctrl and ref_inbuf_ctrl.

The reference mux selects the reference for the PLL and the PLL-bypass path. For debug purposes ip_byp_mux allows to connect the reference divider or doubler output to the clock distribution.

The buffers for the PLL-bypass path can be individually enabled and disabled using ip_byp_en_ch[4:1] and ip_byp_en_y0.

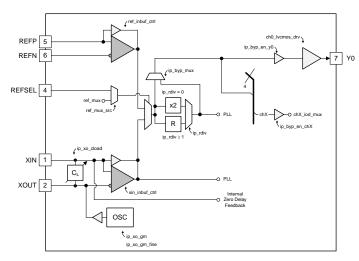


Figure 18. Reference Block

8.3.1.1 Input Stages

8.3.1.1.1 Crystal Oscillator

The XIN and XOUT pins provide a crystal oscillator stage to drive a fundamental mode crystal in the range of 8 MHz to 50 MHz. The crystal input stage integrates a tunable load capacitor array up to 9 pF using ip_xo_cload. The drive capability of the oscillator is adjusted using ip_xo_gm.

8.3.1.1.2 LVCMOS

The LVCMOS input buffer threshold voltage follows VDDREF. This helps to use the device as a level shifter as the outputs have separate supplies.

8.3.1.1.3 Differential AC-Coupled

The differential input stage has an internal bias generator and should only be used with AC-coupled reference inputs.

8.3.1.2 Reference Mux

Either XIN or REF can be selected as reference to the PLL and clock distribution path. The reference mux is controlled using the REFSEL pin with ref_mux_src = 0 or the ref_mux bit-field with ref_mux_src = 1.

8.3.1.3 Reference Divider

A reference divider can be used to divide higher input frequencies to the permitted PFD range. It supports division values of 1 to 255 using ip_rdiv.

Feature Description (continued)

8.3.1.3.1 Doubler

The reference path contains a doubler circuit. It is used to double the input frequency and can be used to achieve the highest PFD update frequency of 100 MHz using a 50-MHz crystal. The doubler activates using ip_rdiv = 0.

8.3.1.4 Bypass-Mux

The input reference or the input to the PFD can be routed to the bypass path using ip_byp_mux.

8.3.1.5 Zero Delay, Internal and External Path

In zero delay mode the REF input clock is used as reference clock at the PFD. The XIN clock can be used to feed an external source as feedback clock to the PFD. The external feedback path is recommended for zero delay operation. Moreover there is an additional internal feedback path which is sourced by output channel 2.

Operation Reference Feedback ref_mux ref_inbuf xin_inbuf _ctrl zdm_mo zdm_cloc zdm_aut ch2_iod div⁽²⁾ pll_psa REFSEL ref_mux ip rdiv pll_psfb pll_ndiv Normal PLL XIN L 0 0 х Reference Normal PLL, REF L 0 1 0 х х Normal PLL, REF 0 Reference Zero Delay, Internal х 1 1 1 Α Α 1 0 1 В В С С Feedback Zero Delay, External Α В C C 1 В Feedback

Table 1. Zero Delay Operation⁽¹⁾

8.3.2 Phase-Locked Loop

The CDCI6214 contains a fully integrated phase-locked loop circuit. The error between a reference phase and an internal feedback phase is compared at the phase-frequency-detector. The comparison result is fed to a charge pump that is connected to an integrated loop filter. The control voltage resulting from the loop filter tunes an internal voltage-controlled oscillator (VCO). The frequency of the VCO is fed through a pre-scaler feedback divider (PSFB) and another feedback divider back to the PFD.

The PLL closed-loop bandwidth is configurable using registers PLL0, PLL1, and PLL2.

- Integer PLL
- PFD operates 1 MHz to 100 MHz
- Live Lock-Detector provides PLL lock status on status pin and bit lock_det (there is an additional sticky bit unlock_s)
- Integrated selectable loop filter components
- For 25-MHz PFD bandwidths between 100 kHz and 3000 kHz can be achieved to optimize PLL to input reference
- Voltage-Controlled Oscillator (VCO) tuning range of 2400 to 2800 MHz
- VCO is compatible to 0.5% spread spectrum (SSC) references at 100 MHz.

^{(1) &#}x27;x' allows any possible bit-field value. An entry of 'A', 'B' or 'C' indicates the same bit-field value.

⁽²⁾ For internal feedback channel 2 is required. For external feedback the output clock connected to XIN / XOUT is recommended to have same settings as default PLL feedback path.

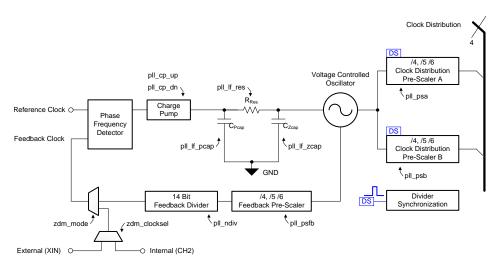


Figure 19. Phase-Locked Loop Circuit

Table 2. C	ommon Cio	ck Generat	or Loop Filte	r Settings "	
DW in MU-	Phase	Damping	I _{CP} in mA	C _{Pcap} IN pF	

·								
f in MU-	£ :- MII-	BW in MHz	Phase	Damping	I _{CP} in mA	C _{Pcap} IN pF	R _{Res} IN kΩ	C _{Zcap} IN pF
f _{VCO} in MHz	f _{PFD} in MHz	BW III WII IZ	Margin in °	Factor	pll_cp_up ⁽²⁾	pll_lf_pcap	pll_lf_res	pll_lf_zcap
2400	25	0.51	67	0.9	2.0	17.5	2.5	450
2400	50	0.97	67	1.3	2.0	17.5	2.5	450
2400	100	1.41	68	1.2	2.4	17.5	1.5	450
2457.6	61.44	1.04	67	1.4	1.8	17.5	2.5	450
2500	25	0.49	67	0.9	2.0	17.5	2.5	450
2500	50	0.93	68	1.3	2.0	17.5	2.5	450
2680	67	0.38	67	1.3	0.2	19.5	5.5	480
2688	48	0.93	68	1.3	1.5	17.5	2.5	480
2688	96	0.36	67	1.0	0.2	19.5	3.5	480
2800	50	1.00	68	1.0	2.6	17.5	1.5	450
2800	100	1.00	68	1.0	1.3	17.5	1.5	450

All values typical design targets.

8.3.3 Clock Distribution

The VCO connects to two individually configurable pre-scaler dividers sourcing the on-chip clock distribution.

The clock distribution consists of four output channels. Each output channel contains a divider with integer and fractional division as well as spread-spectrum and synchronization capabilities.

A mux after each divider allows to feed the generated frequency to the adjacent output buffers. Thus for single frequency clock generation only a single output divider needs to be active.

The output buffers are compatible to various signaling standards: LVDS, CML-like, LVPECL-like, LVCMOS and HCSL using ch1 outbuf ctrl.

- HCSL must be directly connected to a load termination to ground. A series resistance can be used to adapt to the trace impedance.
- LVDS requires a differential termination connected between the positive and negative output buffer pins. The termination can be connected directly or using AC-coupling.
- CML and LVPECL are only supported in an AC-coupled configuration. The receiver and the termination may only be connected through AC-coupling capacitors to the device pins.
- LVCMOS outputs are designed for capacitive loads only. A series resistance should be used to adapt the driver impedance to the trace impedance. For a typical 50- Ω trace, a resistor between 22 Ω to 33 Ω should be

Program same value to pll_cp_dn.

used. The polarity of the positive and negative pins can be adjusted separately.

The output buffers support a wide frequency range of up to 350 MHz. Higher output frequencies up to 700 MHz are functional, but are not covered by electrical specifications.

8.3.3.1 Output Channel

Figure 20. Clock Distribution Pre-Scaler Dividers (1)

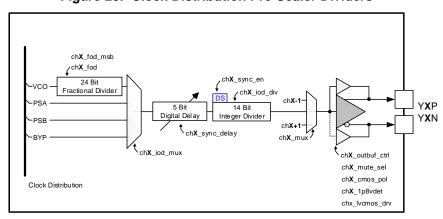


Figure 21. Clock Distribution, Output Channel

INSTANCES	DIVISION VALUES
PSA	4, 5, 6
PSB	4, 5, 6

(1) A known phase relationship for divider synchronization with mixed division values is ensured by architecture.

Table 3. Output Buffer Signal Standards

OUTPUT	LVCMOS	HCSL ⁽¹⁾	LVDS	AC-CML ⁽²⁾	AC-LVPECL ⁽²⁾
Y0	X				
Y1		X	X	X	X
Y2	Х	Х	Х	Х	Х
Y3	Х	Х	Х	Х	Х
Y4		х	Х	х	Х

- (1) For highest performance it is recommended to use HCSL on output Y1 or Y4.
- (2) The common mode shall be provided externally through an external bias source, like a voltage divider or pullup resistor. The output buffer will provide sufficient swing.

Table 4. Output Channel Signal Selection

NO.	INPUT SOURCE	Y1 (N=1)	Y2 (N=2)	Y3 (N=3)	Y4 (N=4)
0	Channel N-1		x	х	х
1	IOD N	х	x	х	х
2	Channel N+1	х	х	х	

Table 5. Integer Divider Input Selection

NO.	SOURCE
0	Pre-scaler A
1	Pre-scaler B
2	Fractional Divider
3	Bypass

Table 6. Output Channel Divider Types and Delay

ABBREVIATION	TYPE	DIVII	DELAY	
ADDREVIATION	ITPE	MIN	MAX	PRE-SCALER, CYCLES
IOD	Integer	1	16383	32 ⁽¹⁾
FOD	Fractional (2)	2/3	4/3	32 ⁽³⁾

- (1) Cycles of the selected pre-scaler PSA or PSB.
- (2) with respect to fractional divider input frequency f_{FOD_IN} = f_{VCO} / 8.
- (3) Cycles of f_{VCO}/8.

8.3.3.2 Fractional Divider

8.3.3.2.1 Synthesis Mode

A 24-Bit resolution fractional divider synthesizes any frequency between $f_{VCO}/12 \le f_{FOD} \le f_{VCO}/6$. The synthesized frequency f_{FOD} is available on the respective integer divider source mux ch[4:1]_iod_mux for further division when required.

Please use the TICS Pro software to generate the fractional divider settings for ch[4:1]_fod_msb and ch[4:1]_fod.

In general the following bits should be considered to activate one of the fractional dividers.

- pdn_pll_fodclk = 0
- $pdn_ch[4:1] = 0$
- pdn_ch[4:1]_fod = 0
- ch[4:1] iod mux = 2

For spread spectrum operation the part shall be configured in "bypass-mode" which is basically a f_{VCO} / 8 integer mode. For bypass mode the settings shall be $ch[4:1]_fod_msb = 32768$ and $ch[4:1]_fod = 0$.

8.3.3.2.2 Spread Spectrum Clocking

The device offers a spread spectrum clocking option in each output channel. The following requirements have to be met for the spread spectrum option to operate:

$$f_{Y[4:1]} = f_{VCO} / (8 \cdot ch[4:1]_iod_div)$$

where

- 2400 <= f_{VCO} <= 2800
- 1 <= ch[4:1]_iod_div <= 48

• 10 MHz
$$\leq$$
 f_{Y[4:1]} \leq 350 MHz (1)

 $f_{ssc_mod_chX} = f_{YX} / (2 \cdot chX_ssc_counter \cdot lookup(chX_ssc_fmod))$

where

8.3.3.2.2.1 Modulation Frequency

The modulation frequency of a spread spectrum clock is derived from the output frequency fy[4:1].

Example: Y1 = 100 MHz with 31.25-kHz SSC modulation frequency.

$$f_{VCO} = 2400 \text{ MHz} \tag{3}$$

$$f_{Y1} = 100 \text{ MHz}$$
 (4)

 $f_{ssc \mod ch1} = 31.25 \text{ kHz}$

where

- ip_rdiv = 1
- pll_ndiv = 24
- pll_psfb = 4
- pdn_pll_fodclk = 0
- pdn_ch1_fod = 0
- ch1_iod_mux = 2
- ch1_iod_div = 3

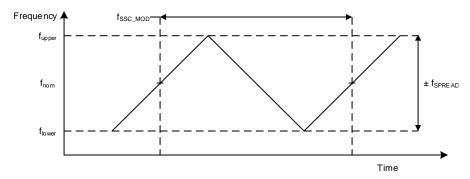
Copyright © 2017–2018, Texas Instruments Incorporated

Submit Documentation Feedback

(5)

- ch1_ssc_counter_src = 0
- ch1_ssc_counter = 4
- ch1_ssc_fmod = 1 → lookup value is 400

8.3.3.2.2.2 Frequency Deviation or Spectrum Spread


The energy of the harmonics from the rectangular clock signal can be spread over a certain frequency range. This frequency deviation leads to lowered average amplitude of the harmonics. This can help to mitigate electromagnetic interference (EMI) challenges in a system when the receiver supports this mode of operation. The modulation shape is triangular.

ch[4:1]_ssc_type selects center- or down-spread. For center-spread the configuration bit-field ch[4:1]_ssc_spread shall be interpreted as $f_{nom} \pm f_{spread}$. For down-spread options as $f_{nom} - f_{spread}$.

Table 7. Spread Spectrum

ab[4:4] and anyond	Down-Spread	Center-Spread
ch[4:1]_ssc_spread	f _{nom} + f _{spread}	f _{nom} ± f _{spread}
0	0.5%	0.25%
1	1.0%	0.5%
2	2.0%	1.0%
3	5.0%	2.5%

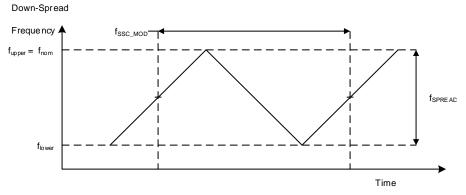


Figure 22. Spread Spectrum Clock

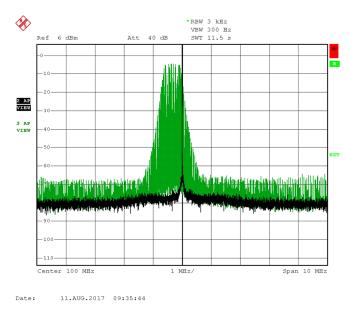


Figure 23. 100 MHz With 0.5% Spread Spectrum (Trace 3) and Without (Trace 2)

8.3.3.2.2.3 Recommended Usage

The spread spectrum settings in the registers are transferred to the analog block with a write of ch[4:1]_ssc_en = 0, followed by a write of ch[4:1]_ssc_en = 1.

8.3.3.3 Divider Glitch-Less Update

The bit fields ch1_glitchless_en can be used to enable glitch-less output divider update. This feature ensures that the high pulse of a clock period is not cut off by the output divider update process. It ensures that setup and hold time of a receiver is not violated. The low pulse in the *transition* from earlier period to the new period is extended accordingly.

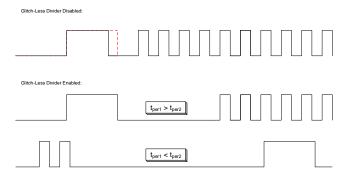


Figure 24. Glitch-Less Divider Update

8.3.4 Control Pins

The ultra-low power clock generator is controlled by multiple LVCMOS input pins.

EEPROMSEL acts as EEPROM page select. The CDCI6214 clock generator contains two pages of configuration settings. The level of this pin is sampled after device power-up. A low level selects page zero. A high level selects page one. The EEPROMSEL pin is a tri-level input pin. This third voltage level is automatically applied by an internal voltage divider. The mid-level is used to select an internal default where the serial interface is enabled.

RESETN/SYNC (pin 8), SCL (pin 12), and SDA (pin 19) have a secondary functionality and can act as general-purpose inputs and outputs (GPIO). This means that either the serial interface or the GPIO functionality can be active.

RESETN/SYNC resets the internal circuitry and is used in the initial power-up sequence. The pin can be reconfigured to act as synchronization input. The differential outputs are kept in mute while SYNC is low. When SYNC is high, outputs are active. Moreover status signals can be driven by this pin.

SCL can act as general-purpose input.

SDA can act as general-purpose input and output.

REFSEL is used to select between the input references to the PLL. A low level selects the crystal reference on XIN. A high level selects the differential input reference on REFP, REFN.

Table 8. Control and GPIO List

	PIN RECONFIGU INPUT				TUT	OUTPUT	TERMIN	IATION
NO.	NAME	GPIO	RABLE?	2-LOGIC- LEVELS	3-LOGIC- LEVELS	2-LEVEL	PULLDOWN	PULLUP
23	EEPROMSEL	-	_	-	yes	_	50 kΩ	50 kΩ
20	STATUS	GPIO1	yes	yes	-	yes	_	50 kΩ
19	SDA	GPIO2	yes	yes	-	yes	_	_
12	SCL	GPIO3	yes	yes	-	_	_	_
11	OE	GPIO4	yes	yes	ı	yes	_	50 kΩ
8	RESETN	GPIO0	yes	yes	-	yes	_	50 kΩ
4	REFSEL	=	-	-	yes	_	50 kΩ	50 kΩ

Table 9. GPIO - Input Signal List(1)

SIGNAL NO.	ABBREVIATION	DESCRIPTION			
0	FREQ_INC	Frequency increment; increments the IOD / FOD. (2)			
1	FREQ_DEC	Frequency decrement; decrements the IOD / FOD. (2)			
2	OE (global)	Enables or disables all differential outputs Y[4:1] (bypass not affected). (3)			
3	SSC_EN	Enables or disables SSC.			
4	OE_Y1	Enables or disables Y1. (3)			
5	OE_Y2	Enables or disables Y2. (3)			
6	OE_Y3	Enables or disables Y3. (3)			
7	OE_Y4	Enables or disables Y4. (3)			

- (1) Signals from this list are available on pin 11 (OE / GPIO4) and pin 20 (STATUS / GPIO1), see GENERIC1.
- (2) Selected using bit mask in GENERIC3.
- (3) Disable / Mute behaviour configured individually using ch_mute_sel bit in GENERIC0 table.

Table 10. GPIO - Output Signal List⁽¹⁾

SIGNAL NO.	ABBREVIATION	DESCRIPTION
0	PLL_LOCK	0 = PLL out of lock; 1 = indicates PLL in lock
1	XTAL_OSC	0 = crystal failure; 1 = crystal oscillates
2	CAL_DONE	0 = PLL (VCO) calibration ongoing; 1 = calibration done
3	CONF_DONE	0 = device logic busy; 1 = device operational
4	SYNC_DONE	0 = output sync ongoing, muted; 1 = outputs released operational
5	EEPROM_BUSY	0 = EEPROM idle; 1 = EEPROM access ongoing
6	EEPROM_Y12	0 = EEPROM pin sees low level; 1 = EEPROM pin sees high level
7	EEPROM_M12	0 = EEPROM pin sees low or high level; 1 = EEPROM pin sees mid level
8	I2C_LSB	Indicates I ² C slave address LSB config from loaded EEPROM
9	CLK_FSM	Clock, State machine
10	CLK_PFD_REF	Clock, PFD, reference
11	CLK_PFD_FB	Clock, PFD, feedback
12	BUF_SYNC	buffered SYNC pin

(1) Signals from this list are available on pin 8 (RESETN/SYNC or GPIO0), pin 11 (OE / GPIO4) and pin 20 (STATUS / GPIO1).

Table 10. GPIO - Output Signal List() (continued)

SIGNAL NO.	ABBREVIATION	DESCRIPTION
13	BUF_SCL	buffered SCL pin
14	BUF_SDA	buffered received SDA pin

8.3.4.1 Frequency Increment and Decrement

This functionality allows to select integer or fractional output dividers in the clock distribution. A bit mask (mask_inc_dec_fod_iod_ch[4:1]) allows to select a divider to be incremented or decremented in a predefined, configurable step size. Every rising edge on the FREQ_INC signal increases the output frequency, thus decreases the division value. Every rising edge on the FREQ_DEC signal decreases the output frequency, thus increases the division value. There are two ways to trigger the increment or decrement: 1) appropriate configuration of the GPIOs and sending pulses using a micro-controller 2) using the shadow bits of the GPIOs via the serial interface, see fod_iod_reg_mode, fod_iod_inc, and fod_iod_dec.

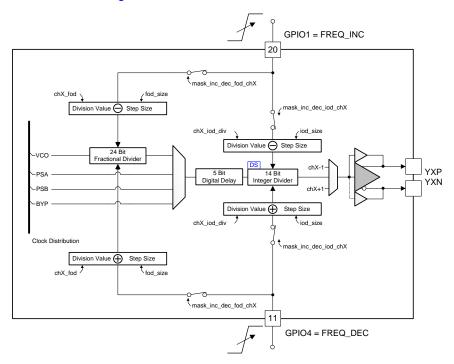


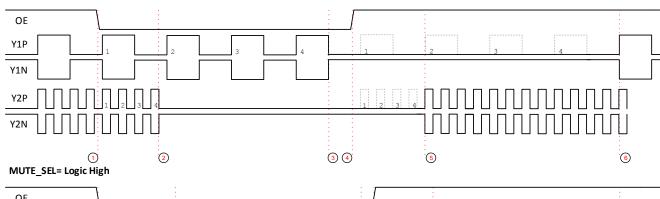
Figure 25. Frequency Increment and Decrement by Control Pin

8.3.4.2 Global and Individual Output Enable: OE and OE_Y[4:1]

The output enable functionality allows to enable or disable all or a specific output buffer. The bypass copy on Y0 is excluded from the global output enable signal. When an output is disabled, it drives a configurable mute-state, ch[4:1]_mute_sel. When the serial interface is deactivated one can use all individual output enable signals at the same time, see mode. The individual output enable signal controls the respective output channel integer divider to gate the clock. Therefore each integer divider needs to be active. When multiple outputs are sourced from the same integer divider, the respective OE signal will enable/disable the output(s). (1)

NOTE

When multiple output enable signals are configured on multiple-GPIO pins, then the global output enable OE has higher priority than the individual output enable OE[4:1]. An individual output enable OE[4:1] may only be configured on a single pin.


(1) The GPIO direction of pins 12 and 19 is automatically set through the mode bit. Pin 11 and 20 must be set as inputs using gpio1_dir_sel and gpio4_dir_sel bit in the GENERICO table.

MUTE_SEL= Logic Low

The individual output enable signal enables and disables the respective output in a deterministic way. Therefore the high and low level of the signal is qualified by counting four cycles of the respective output clock. The following steps can be seen in Figure 26:

- 1. The OE falling edge which disables the outputs.
- 2. Transition from logic high to logic low / logic low to logic high for Y2 after four rising edges.
- 3. Transition from logic high to logic low / logic low to logic high for Y1 after four rising edges.
- 4. The OE rising edge which enables the outputs.
- 5. Output Y2 starts toggling after four rising edges.
- 6. Output Y1 starts toggling after four rising edges.

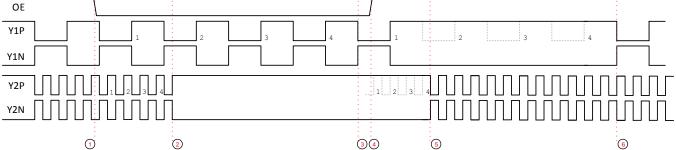


Figure 26. Individual Output Enable and Disable

NOTE

The deterministic behaviour of the individual output enable is designed for an output frequency up to 200 MHz.

8.3.5 Operation Modes

The device can operate in different modes.

Following operating modes can be set and the GPIOs configured. An operating mode change only becomes effective when it is loaded from the EEPROM after a power cycle.

Table 11. Modes of Operation

DESCRIPTION	MODE	REFSEL	EEPROMSEL	GPIO4	GPIO3	GPIO2	GPIO1
I ² C + GPIOs	Fallback	M	M	I/O	SCL	SDA	I/O
I ² C + GPIOs	0	LH	LH	I/O	SCL	SDA	I/O
OEs	1	LH	LH	OE4	OE3	OE2	OE1

8.3.6 Divider Synchronization - SYNC

The output dividers can be reset in a deterministic way. This can be achieved using the sync bit or the pin 8 configured for SYNC function using gpio0_input_sel and gpio0_dir_sel. The level of the pin is qualified internally using the reference frequency at the PFD. A low level will mute the outputs. A high level will synchronously release all output dividers to operation, so that all outputs share a common rising edge, see Figure 27. The first rising edge can be individually delayed in steps of the respective pre-scaler period, up to 32 cycles using ch1_sync_delay. This allows to compensate external delays like routing mismatch, cables or inherent delays introduced by logic gates in an FPGA design. Each channel can be included or excluded from the SYNC process using ch1_sync_en. (1) (2)

For a deterministic behaviour over power-cycles seen from input to output the reference divider must be set to 1. It should not divide the reference clock nor should the reference doubler be used.

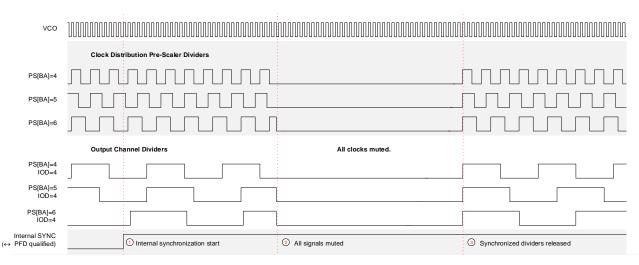


Figure 27. Divider Synchronization

- (1) ch[4:1]_sync_en may only be activated with an active clock source selected in ch1_iod_mux bit in the CH1_CTRL2 table.
- (2) The LVCMOS bypass output Y0 is not part of the SYNC process, neither are the dividers of the PLL.

3							
VCO FREQUENCY IN MHz	PRE-SCALER STEP IN ns						
VCO FREQUENCY IN MINZ	/4	/5	/6				
2400	1.67	2.08	2.50				
2457.6	1.63	2.03	2.44				
2500	1.60	2.00	2.40				
2800	1.43	1.79	2.14				

Table 12. Digital Delay Step Size

8.3.7 EEPROM - Cyclic Redundancy Check

The device contains a cyclic redundancy check (CRC) function for reads from the EEPROM to the device registers. At start-up the EEPROM will be read internally and a CRC value calculated. One of the EEPROM words contains an earlier stored CRC value. The stored and the actual CRC value are compared and the result transferred to STATUS1 register. The CRC calculation can be triggered again by writing a '1' to the update_crc bit. A mismatch between stored and calculated CRC value is informational only and non-blocking to the device operation. Just reading back the CRC status bit and the live CRC value can speed up in-system EEPROM programming and avoid reading back each word of the EEPROM for known configurations.

The polynomial used is CCITT-CRC16: $x^{16} + x^{12} + x^5 + 1$.

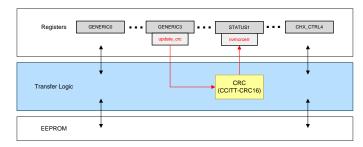


Figure 28. EEPROM CRC

8.3.8 Power Supplies

The CDCI6214 provides multiple power supply pins. Each of the power supplies supports 1.8 V, 2.5 V, or 3.3 V. Internal low-dropout regulators (LDO) source the internal blocks and allow each pin to be supplied with its individual supply voltage. The VDDREF pin supplies the control pins and the serial interface. Therefore, any pullup resistors shall be connected to the same domain as VDDREF. By default the LDOs are configured for 1.8-V ±5% operation.

8.3.8.1 Power Management

The device is very flexible with respect to internal power management. Each block offers a power-down bit and can be disabled to save power when the block is not required. The available bits are illustrated in Figure 29. The bypass output Y0 is connected to the pdn_ch4 bit. Each output channel has a bit which should be adapted to the applied supply voltage, ch[4:1]_1p8vdet.

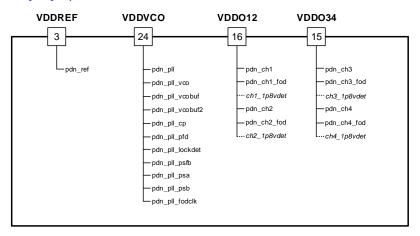


Figure 29. Power Management

8.4 Device Functional Modes

8.4.1 Pin Mode

In pin mode, the pins 12 and 19 are input pins which act as *individual output enable* pins. Together with pin 11 and 20, this allows for one output enable pin per output channel.

8.4.2 Serial Interface Mode

In serial interface mode, pins 12 and 19 are configured as an I²C interface.

Device Functional Modes (continued)

8.4.2.1 Fall-Back Mode

As the programming interface can be intentionally deactivated using the EEPROM, an accidental disabling of the I²C blocks further access to the device. The serial interface can be forced using the fall-back mode. To enter this mode, the user leaves pin 4 and pin 23 floating while the supply voltage is applied to VDDREF. In this mode, pin 11 is preconfigured as an input and pin 20 is configured as an output.

8.5 Programming

The CDCI6214 ultra-low power clock generator provides an I^2C -compatible serial interface for register and EEPROM access. The device is compatible to standard-mode I^2C at 100 kHz and the fast-mode I^2C at 400-kHz clock frequency.

Table 13. I²C-Compatible Serial Interface, Slave Address Byte

7	6	5	4	3	2	1	0
Slave Address A[6:0] ⁽¹⁾							R/W# Bit (2)

- (1) The slave address consists of two sections. The hardwired MSBs A[6:2] and the software-selectable LSBs A[1:0].
- (2) The R/W# bit indicates a read (1) or a write (0) transfer.

Table 14 shows the slave address decoding with respect to EEPROMSEL pin. This enables the user to avoid insystem conflicts with different configurations, as the selected EEPROM page can be reflected in the slave address least significant bit A0. Moreover a device being powered up in the silicon default, can always be expected under the default address of 0xE9 for reads (or 0xE8 for writes).

Table 14. I²C-Compatible Serial Interface, Programmable Slave Address

A6	A5	A4	A3	A2	A1	A0	EEPROMSEL	DESCRIPTION
					0	0	MID	Device Default
1	1	1	0	1	1	I2C_A0 ⁽¹⁾	LOW	EEPROM, Page 0
					1	I2C_A0 ⁽²⁾	HIGH	EEPROM, Page 1

- (1) Configuration Bit in EEPROM Page 0, default value of 0.
- (2) Configuration Bit in EEPROM Page 1, default value of 1.

Copyright © 2017–2018, Texas Instruments Incorporated

Product Folder Links: CDCI6214

The serial interface uses the following protocol as shown in Figure 30. The slave address is followed by a word-wide register offset and a word-wide register value.

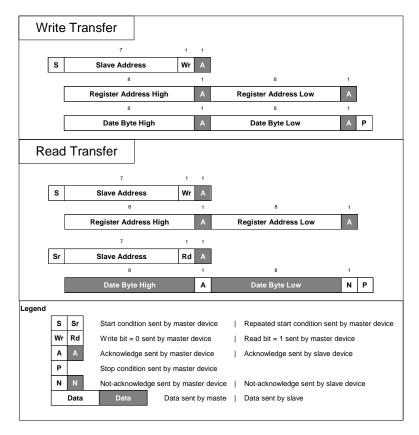


Figure 30. I²C-Compatible Serial Interface, Supported Protocol

8.5.1 Recommended Programming Procedure

TI recommends programming the registers of the device in the following way:

- 1. Ensure that ee lock is set when overwriting the EEPROM.
- 2. Configure the voltage domain bits appropriately ch[4:1]_1p8vdet.
- 3. Program register addresses in descending order from 0x44 to 0x00 including all register addresses with reserved values.

8.5.2 EEPROM Access

NOTE

The EEPROM word write access time is typically 8 ms. The EEPROM_BUSY signal indicates when the EEPROM is busy and can be observed as a status signal on a GPIO pin to optimally time the writes (for example, in gpio4_output_sel).

There are two methods to write into the internal EEPROM:

- 1. Register Commit
- 2. EEPROM Direct Access

Use the following steps to bring the device into a known state and be able to conduct the programming:

- 1. Power down all device supplies
- 2. Apply RESETN=LOW.
- 3. Apply REFSEL=MID (leave tri-stated).
- 4. Apply EEPROMSEL=MID (leave tri-stated).

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

- 5. Apply 1.8 V to all device supplies. When device operation is not required, only apply 1.8 V to VDDREF.
- 6. Apply RESETN=HIGH.
- 7. Use the I²C interface to configure the device using slave address 0x74. See Table 14 for more details.

In the Register Commit flow all bits from the device registers are copied into the EEPROM. The recommended flow is:

- 1. Pre-configure the device as desired, except the serial interface using mode.
- 2. Write 1 to recal to calibrate the VCO in this operation mode.
- 3. Select the EEPROM page, to copy the register settings into, using regcommit_page.
- 4. Unlock the EEPROM for write access with ee_lock = 0x5
- 5. Start the commit operation by writing a 1 to regcommit
- 6. Force a CRC update by writing a 1 to update_crc.
- 7. Read back the calculated CRC in nvmlcrc.
- 8. Store the read CRC value in the EEPROM by writing 0x3F to nvm_wr_addr and then the CRC value to nvm_wr_data.

In the *EEPROM Direct Access* flow the EEPROM words are directly accessed using the address and the data bit-fields. The recommended flow is:

- 1. Prepare an EEPROM image consisting of 64 words.
- 2. Unlock the EEPROM for write access with ee lock = 0x5
- 3. Write the initial address offset to the address bit-field. Write a 0x00 to nvm wr addr.
- 4. Loop through the EEPROM image from address 0 to 63 by writing each word from the image to nvm_wr_data. The EEPROM word address is automatically incremented by every write access to nvm wr data.

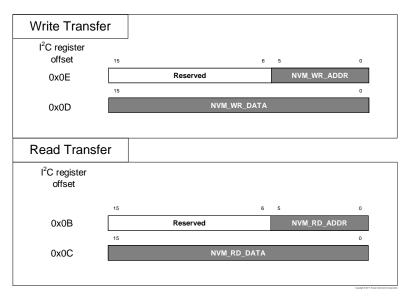


Figure 31. EEPROM Direct Access Using I²C

8.5.3 Device Defaults

The CDCI6214 contains the following defaults:

Table 15. CDCI6214 Register Defaults

ADDRESS	DEFAULT EEPROM PAGE 0		EEPROM PAGE 1
0x46	0x00460000	0x00460000	0x00460000
0x45	0x00450000	0x00450000	0x00450000
0x44	0x00440000	0x00440000	0x00440000
0x43	0x00430020	0x00430020	0x00430020

Table 15. CDCI6214 Register Defaults (continued)

ADDDECC	DEFAULT	EEDBOM DAGE O	FEDDOM DAGE 4
ADDRESS	DEFAULT	EEPROM PAGE 0	EEPROM PAGE 1
0x42	0x00420000	0x00420200	0x00420200
0x41	0x00410F34	0x00410F34	0x00410F34
0x40	0x0040000D	0x0040000D	0x0040000D
0x3F	0x003F0210	0x003F4210	0x003F4210
0x3E	0x003E4210	0x003E4218	0x003E4218
0x3D	0x003D1000	0x003D1500	0x003D1500
0x3C	0x003C0010	0x003C0018	0x003C0018
0x3B	0x003B0009	0x003B0061	0x003B0061
0x3A	0x003A0008	0x003A0008	0x003A0008
0x39	0x00390A65	0x00398851	0x00398851
0x38	0x00380405	0x00380409	0x00380008
0x37	0x00370004	0x00370006	0x00370000
0x36	0x00360000	0x00360000	0x00360000
0x35	0x00358000	0x00358000	0x00358000
0x34	0x00340008	0x00340008	0x00340008
0x33	0x00330A65	0x00338861	0x00338861
0x32	0x00320405	0x00320429	0x00320431
0x31	0x00310004	0x00310006	0x00310006
0x30	0x00300000	0x00300000	0x00300000
0x2F	0x002F8000	0x002F8000	0x002F8000
0x2E	0x002E0008	0x002E0008	0x002E0008
0x2D	0x002D0A65	0x002D0851	0x002D0851
0x2C	0x002C0405	0x002C0409	0x002C0010
0x2B	0x002B0004	0x002B0006	0x002B0000
0x2A	0x002A0000	0x002A0000	0x002A0000
0x29	0x00298000	0x00298000	0x00298000
0x28	0x00280008	0x00280008	0x00280008
0x27	0x00270A65	0x00270851	0x00270851
0x26	0x00260405	0x00260409	0x00260409
0x25	0x00250004	0x00250006	0x00250006
0x24	0x00240000	0x00240000	0x00240000
0x23	0x00238000	0x00238000	0x00238000
0x22	0x00220050	0x00220050	0x00220050
0x21	0x00210007	0x00210007	0x00210007
0x20	0x00200000	0x00200000	0x00200000
0x1F	0x001F1E72	0x001F1E72	0x001F1E72
0x1E	0x001E5140	0x001E5140	0x001E5140
0x1D	0x001D400A	0x001D000C	0x001D000C
0x1C	0x001C0000	0x001C0000	0x001C0000
0x1B	0x001B0000	0x001B0000	0x001B0000
0x1A	0x001A0718	0x001A0A1C	0x001A0A1C
0x19	0x00190000	0x00190406	0x00192406
0x18	0x00180601	0x00180601	0x00180601
0x17	0x00170000	0x00170595	0x00170595
0x16	0x00160000	0x00160000	0x00160000
0x15	0x00150000	0x00150000	0x00150000
0x14	0x00140000	0x00140001	0x00140001
0x13	0x00130000	0x00130000	0x00130000
0x12	0x00120000	0x0012FFFF	0x0012FFFF
0x11	0x001126C4	0x001126C4	0x001126C4
0x10	0x0010921F	0x0010921F	0x0010921F

Product Folder Links: CDCI6214

Submit Documentation Feedback

Table 15. CDCI6214 Register Defaults (continued)

ADDRESS	DEFAULT	EEPROM PAGE 0	EEPROM PAGE 1
0xF	0x000FA037	0x000FA037	0x000FA037
0xE	0x000E0000	0x000E0000	0x000E0000
0xD	0x000D0000	0x000D0000	0x000D0000
0xC	0x000C0000	0x000C0000	0x000C0000
0xB	0x000B0000	0x000B0000	0x000B0000
0xA	0x000A0000	0x000AC964	0x000AC964
0x9	0x00090000	0x0009C964	0x0009C964
0x8	0x00080000	0x00080001	0x00080001
0x7	0x00070000	0x00070C0D	0x00070C0D
0x6	0x00060000	0x0006159F	0x000619CA
0x5	0x00050028	0x00050028	0x00050028
0x4	0x00040055	0x00040055	0x000400DD
0x3	0x00030000	0x00030000	0x00030800
0x2	0x00020053	0x00020053	0x00020053
0x1	0x00016882	0x00016865	0x00016864
0x0	0x00000000	0x00000001	0x00000000

Table 16. Default EEPROM Image

ADDRESS	Section	Word Value
0x0	Base	0xEE00
0x1		0x490F
0x2		0x0362
0x3		0x0E00
0x4		0x1400
0x5		0xC104
0x6		0x0C00
0x7		0x5000
0x8		0x0861
0x9		0x8421
0xA		0x0006
0xB		0x0000

Table 16. Default EEPROM Image (continued)

. and to Delant III mage (community)				
ADDRESS	Section	Word Value		
0xC		0x6501		
0xD		0x5368		
0xE		08AAx0		
0xF		0x4382		
0x10		0x0001		
0x11		0x0030		
0x12		0x4500		
0x13		0x79C9		
0x14	Page 0	0x8000		
0x15		0x0C00		
0x16		0x1200		
0x17		0x2904		
0x18		0x0002		
0x19		0x3002		
0x1A		0x4800		
0x1B		0xA410		
0x1C		0x0008		
0x1D		0xC008		
0x1E		0x2000		
0x1F		0x1045		
0x20		0x0033		
0x21		0x0020		
0x22		0x8003		
0x23		0x4104		
0x24		0x39CA		
0x25		0x0000		

Submit Documentation Feedback

Table 16. Default EEPROM Image (continued)

ADDRESS	Section	Word Value	
0x26		0x6400	
0x27		0x5368	
0x28		0xEE80	
0x29		0x4382	
0x2A		0x0001	
0x2B		0x0030	
0x2C		0x4500	
0x2D		0x79C9	
0x2E		0x8000	
0x2F		0x0C00	
0x30		0x1200	
0x31		0x2904	
0x32	Dana 4	0x0002	
0x33	Page 1	0x0002	
0x34		0x8000	
0x35		0xA400	
0x36		0x00x0	
0x37		0xC008	
0x38		0x2000	
0x39		0x1046	
0x3A		0x0033	
0x3B		0x0020	
0x3C		0x0000	
0x3D		0x4004	
0x3E		0x39CA	
0x3F		0xC964	
	1		

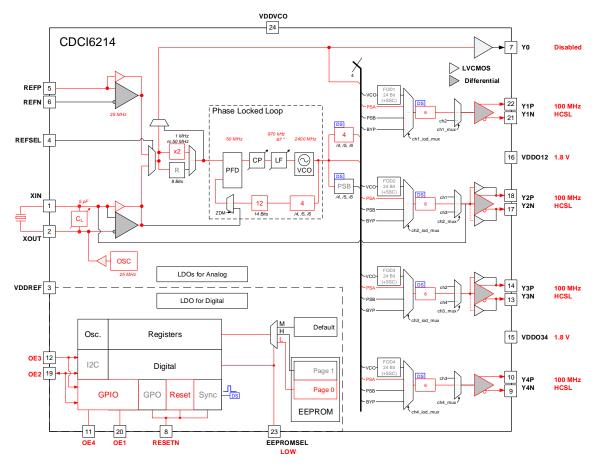


Figure 32. CDCI6214 - Pre-Configured EEPROM Page 0

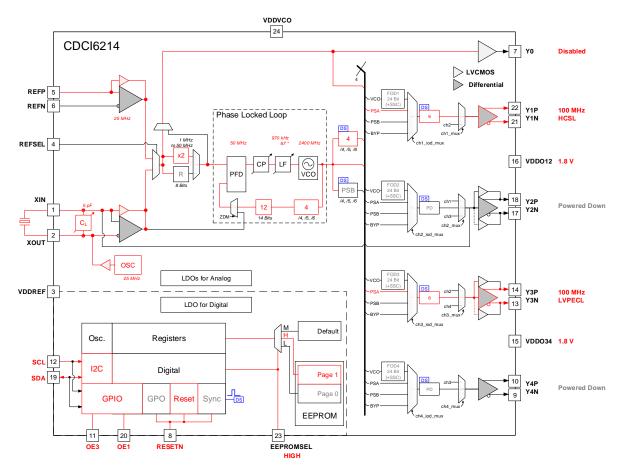


Figure 33. CDCI6214 - Pre-Configured EEPROM Page 1

Copyright © 2017–2018, Texas Instruments Incorporated

8.6 Register Maps

8.6.1 CDCI6214 Registers

Table 17 lists the memory-mapped registers for the CDCI6214.

NOTE

All register offset addresses not listed in Table 17 should be considered as reserved locations and the register contents should not be modified.

NOTE

All bit-field combinations not listed in the description column should be considered as reserved combinations and should only be programmed using the given values.

Table 17. CDCI6214 Registers

ADDRESS	ACRONYM	REGISTER NAME	SECTION
0h	GENERIC0	Generic setting, device operation mode, synchronization, control pins, reset, and power down.	Go
1h	GENERIC1	Generic settings, GPIO input signal selection.	Go
2h	GENERIC2	Generic settings, GPIO output signal selection.	Go
3h	GENERIC3	Generic settings, EEPROM and frequency increment / decrement.	Go
4h	POWER0	Power-down bits, output channels.	Go
5h	POWER1	Power-down bits, phase-locked-loop.	Go
6h	STATUS0	Status information, calibration bus.	Go
7h	STATUS1	Status information, PLL lock and EEPROM.	Go
8h	STATUS2	Status information, miscellaneous	Go
9h	STATUS3	Status information, live CRC of EEPROM	Go
Ah	EEPROM0	EEPROM, stored CRC of EEPROM	Go
Bh	EEPROM1	EEPROM, direct access read address	Go
Ch	EEPROM2	EEPROM, direct access read data	Go
Dh	EEPROM3	EEPROM, direct access write address	Go
Eh	EEPROM4	EEPROM, direct access write data	Go
Fh	STARTUP0	Start-up configuration, EEPROM lock, auto-calibration, and I2C glitch filter	Go
10h	STARTUP1	Start-up configuration, digital state machine counters	Go
11h	STARTUP2	Start-up configuration, digital state machine counters	Go
18h	REV0	Revision ID	Go
1Ah	INPUT0	Input reference, buffer configuration, and crystal oscillator controls.	Go
1Bh	INPUT1	Input reference, reference divider, and bypass buffers.	Go
1Ch	INPUT_DBG0	Input reference debug, status pin buffers.	Go
1Dh	PLL0	PLL, feedback dividers.	Go
1Eh	PLL1	PLL, charge pump current and clock distribution pre-scaler dividers.	Go
1Fh	PLL2	PLL, loop filter configuration	Go
21h	PLL4	PLL, lock detector and PFD delay	Go
23h	CH1_CTRL0	Output channel 1, fractional divider.	Go
24h	CH1_CTRL1	Output channel 1, fractional divider.	Go
25h	CH1_CTRL2	Output channel 1, integer divider and mux control.	Go
26h	CH1_CTRL3	Output channel 1, synchronization, digital delay, output buffer, mux and mute controls.	Go
27h	CH1_CTRL4	Output channel 1, divider glitch-less enable and spread spectrum controls.	Go
28h	CH1_CTRL5	Output channel 1 , fractional divider calibration.	Go

Table 17. CDCI6214 Registers (continued)

ADDRESS	ACRONYM	REGISTER NAME	SECTION
29h	CH2_CTRL0	Output channel 2, fractional divider.	Go
2Ah	CH2_CTRL1	Output channel 2, fractional divider.	Go
2Bh	CH2_CTRL2	Output channel 2, integer divider and mux control.	Go
2Ch	CH2_CTRL3	Output channel 2, synchronization, digital delay, output buffer, mux and mute controls.	Go
2Dh	CH2_CTRL4	Output channel 2, divider glitch-less enable and spread spectrum controls.	Go
2Eh	CH2_CTRL5	Output channel 2 , fractional divider calibration.	Go
2Fh	CH3_CTRL0	Output channel 3, fractional divider.	Go
30h	CH3_CTRL1	Output channel 3, fractional divider.	Go
31h	CH3_CTRL2	Output channel 3, integer divider and mux control.	Go
32h	CH3_CTRL3	Output channel 3, synchronization, digital delay, output buffer, mux and mute controls.	Go
33h	CH3_CTRL4	Output channel 3, divider glitch-less enable and spread spectrum controls.	Go
34h	CH3_CTRL5	Output channel 3, fractional divider calibration.	Go
35h	CH4_CTRL0	Output channel 4, fractional divider.	Go
36h	CH4_CTRL1	Output channel 4, fractional divider.	Go
37h	CH4_CTRL2	Output channel 4, integer divider and mux control.	Go
38h	CH4_CTRL3	Output channel 4, synchronization, digital delay, output buffer, mux and mute controls.	Go
39h	CH4_CTRL4	Output channel 4, divider glitch-less enable and spread spectrum controls.	Go
3Ah	CH4_CTRL5	Output channel 4, fractional divider calibration.	Go
3Bh	CHX_CTRL0	Output channels, generic clock distribution and bypass output controls.	Go
3Ch	CHX_CTRL1	Output channels, common fractional divider controls.	Go
3Dh	CHX_CTRL2	Output channels, common fractional divider controls.	Go
3Eh	CHX_CTRL3	Output channels, common fractional divider controls.	Go
3Fh	CHX_CTRL4	Output channels, common fractional divider controls.	Go

Complex bit access types are encoded to fit into small table cells. Table 18 shows the codes that are used for access types in this section.

Table 18. CDCI6214 Access Type Codes

ACCESS TYPE	CODE	DESCRIPTION			
READ TYPE					
R	R	Read			
RC	С	to Clear			
	R	Read			
WRITE TYPE					
W	W	Write			
WEX	W	Write			
WMC	W	Write			
WPD	W	Write			
WSC	W	Write			
WST	W	Write			
RESET OR DEFAULT VALUE					
-n		Value after reset or the default value			

8.6.1.1 GENERICO Register (Address = 0h) [reset = 0h]

GENERICO is shown in Figure 34 and described in Table 19.

Return to Summary Table.

Figure 34. GENERICO Register

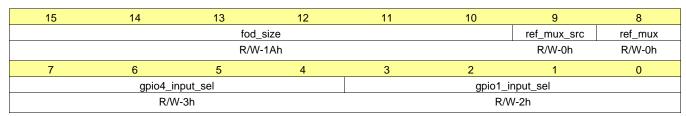
15	14	13	12	11	10	9	8
i2c_a0	gpio0_input_sel	gpio4_dir_sel	gpio1_dir_sel	gpio0_dir_sel	zdm_clocksel	zdm_muxsel	zdm_mode
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
RESERVED	pll_rst_lockdet	sync	recal	resetn_soft	swrst	powerdown	mode
R/W-0h	R/W-0h	R/WSC-0h	R/WSC-0h	R/W-0h	R/WSC-0h	R/WPD-0h	R/W-0h

Table 19. GENERICO Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION		
15	i2c_a0	R/W	Oh	When regcommit is used to program an EEPROM page, using regcommit_page, this defines the LSB of the I ² C slave address. When a configuration is loaded into the registers from an EEPROM page, this represents the saved LSB bit.		
14	gpio0_input_sel	R/W	0h	Input signal select for GPIO0, Pin 8. 0h = RESETN 1h = SYNC		
13	gpio4_dir_sel	R/W	Oh	GPIO4 direction select. 0h = Input 1h = Output		
12	gpio1_dir_sel	R/W	Oh	GPIO1 direction select. Oh = Input 1h = Output		
11	gpio0_dir_sel	R/W	Oh	Direction select for Pin 8. 0h = Input 1h = Output		
10	zdm_clocksel	R/W	Oh	Selects the internal or external clock for calibration, in the ZDM mode. In non-ZDM mode, always internal clock will be selected and this register doesn't have any meaning. SM signal. Refer Digital Review Document Oh = Internal Feedback		
9	zdm_muxsel	R/W	Oh	1h = External Feedback Mux select for ZDM or non-ZDM loop. 0h = 0 1h = 1		
8	zdm_mode	R/W	Oh	Zero Delay Mode Oh = ZDM Off 1h = ZDM On		
7	RESERVED	R/W	0h	Reserved.		
6	pll_rst_lockdet	R/W	0h	Reset (active high) to PLL lock detect circuit.		
5	sync	R/WSC	0h	Generates sync pulse (for output decoder). This is a self clearing register bit and writing '1' will create the SYNC pulse.		
4	recal	R/WSC	0h	Self clearing bit. Writing '1' will do the re-calibration. For example - after the configuration followed by calibration if '1' is written to this register the calibration engine will start with the current capcode and cross code.		

Table 19. GENERICO Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
3	resetn_soft	R/W	0h	Configure the pin RESETN/SYNC as a soft reset.
				0h = Hard Reset (reset state machines and registers)
				1h = Soft Reset (state machines only, register content stays as is)
2	swrst	R/WSC	Oh	Soft reset bit. This is a self clearing bit. Writing a '0' has no effect and writing a '1' creates a reset pulse which resets the digital logic except the programmable registers. Also- this soft reset has similar effect on digital logic as hard reset (RESENTN/SYNC). Soft reset will restart the configuration and calibration.
1	powerdown	R/WPD	0h	Analog Power Down.
				0h = Active
				1h = Power down
0	mode	R/W	0h	Mode of Operation.
				0h = Serial Interface, I2C
				1h = Pin Mode, Output Enable



8.6.1.2 GENERIC1 Register (Address = 1h) [reset = 6A32h]

GENERIC1 is shown in Figure 35 and described in Table 20.

Return to Summary Table.

Figure 35. GENERIC1 Register

Table 20. GENERIC1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION		
15-10	fod_size	R/W	1Ah	This sets the FOD increment/decrement size step. Refer FOD Calculation document to calculate FOD Step Size (which is dependent upon Output Frequency). Step Size of 26 would set step at 0.1ppm/step for 19.2-MHz output.		
9	ref_mux_src	R/W	0h	Reference mux control signal source. 0h = Pin 1h = ref_mux bit-field		
8	ref_mux	R/W	Oh	Reference mux bit override. 0h = XIN 1h = REF		
7-4	gpio4_input_sel	R/W	3h	GPIO4 output signal select. Do not choose the same signal on gpio1_input_sel. Oh = FREQ_INC 1h = FREQ_DEC 2h = OE 3h = SSC_EN 4h = OE1 5h = OE2 6h = OE3 7h = OE4		
3-0	gpio1_input_sel	R/W	2h	GPIO1 output signal select. Do not choose the same signal on gpio4_input_sel. Oh = FREQ_INC 1h = FREQ_DEC 2h = OE 3h = SSC_EN 4h = OE1 5h = OE2 6h = OE3 7h = OE4		

8.6.1.3 GENERIC2 Register (Address = 2h) [reset = 53h]

GENERIC2 is shown in Figure 36 and described in Table 21.

Return to Summary Table.

Figure 36. GENERIC2 Register

15	14	13 12		11	10	9	8
RESERVED	iod_size	RESERVED		gpio0_output_sel			
R/W-0h	R/W-0h	RΛ	V-0h	R/W-0h			
7	6	5	4	3	2	1	0
gpio4_output_sel				gpio1_ou	tput_sel		
R/W-5h					R/W	-3h	

Table 21. GENERIC2 Register Field Descriptions

DIT	FIELD	TVDE	DECET	DECODIFICAL
BIT	FIELD	TYPE	RESET	DESCRIPTION
15	RESERVED	R/W	0h	Reserved.
14	iod_size	R/W	0h	Increment size for IOD (0 h = step size 1; 1h = Step size 100)
				0h = 1
				1h = 10
13-12	RESERVED	R/W	0h	Reserved.
11-8	gpio0_output_sel	R/W	0h	GPIO0, Pin 8, output select ,
				0h = PLL_LOCK
				1h = XTAL_OSC
				2h = CAL_DONE
				3h = CONF_DONE
				4h = SYNC_DONE
				5h = EEPROM_BUSY
				6h = EEPROM_Y12
				7h = EEPROM_M12
				8h = I2C_LSB
				9h = CLK_FSM
				Ah = CLK_PFD_REF
				Bh = CLK_PFD_FB
				Ch = BUF_SYNC
				Dh = BUF_SCL
				Eh = BUF_SDA

Table 21. GENERIC2 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-4	gpio4_output_sel	R/W	5h	GPIO4 , output select ,
				0h = PLL_LOCK
				1h = XTAL_OSC
				2h = CAL_DONE
				3h = CONF_DONE
				4h = SYNC_DONE
				5h = EEPROM_BUSY
				6h = EEPROM_Y12
				7h = EEPROM_M12
				$8h = I2C_LSB$
				9h = CLK_FSM
				Ah = CLK_PFD_REF
				Bh = CLK_PFD_FB
				Ch = BUF_SYNC
				Dh = BUF_SCL
				Eh = BUF_SDA
3-0	gpio1_output_sel	R/W	3h	GPIO1 , output select ,
				0h = PLL_LOCK
				1h = XTAL_OSC
				2h = CAL_DONE
				3h = CONF_DONE
				4h = SYNC_DONE
				5h = EEPROM_BUSY
				6h = EEPROM_Y12
				7h = EEPROM_M12
				$8h = I2C_LSB$
				9h = CLK_FSM
				Ah = CLK_PFD_REF
				Bh = CLK_PFD_FB
				Ch = BUF_SYNC
				Dh = BUF_SCL
				Eh = BUF_SDA

8.6.1.4 GENERIC3 Register (Address = 3h) [reset = 0h]

GENERIC3 is shown in Figure 37 and described in Table 22.

Return to Summary Table.

Figure 37. GENERIC3 Register

15	14	13	12	11	10	9	8
disable_crc	update_crc	nvmcommit	regcommit	regcommit_pag e	mask_inc_dec_ iod_ch4	mask_inc_dec_ iod_ch3	mask_inc_dec_ iod_ch2
R/W-0h	R/WMC-0h	R/WSC-0h	R/WSC-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
mask_inc_dec_ iod_ch1	mask_inc_dec_ fod_ch4	mask_inc_dec_ fod_ch3	mask_inc_dec_ fod_ch2	mask_inc_dec_ fod_ch1	fod_iod_dec	fod_iod_inc	fod_iod_reg_m ode
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/WSC-0h	R/WSC-0h	R/W-0h

Table 22. GENERIC3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15	disable_crc	R/W	Oh	Disable the CRC computation. However if Page is selected CRC will happen after PoR (power on reset from analog). For example- after the calibration if this bit is set to '1' and apply a soft reset (or reset through pin) the configuration will bypass the CRC computation.
14	update_crc	R/WMC	0h	This is a self clearing register bit. Writing a '1' will cause the recomputation of CRC. The computed CRC can be read from the live CRC (nvmlcrc) register after the status bit nvmbusyh = 0.
13	nvmcommit	R/WSC	Oh	NVM Commit to Registers. The NVMCOMMIT bit is used to initiate a transfer of the on-chip EEPROM contents to internal registers. The transfer happens automatically after reset or when NVMCOMMIT is set to 1. The NVMCOMMIT bit is automatically cleared to 0. The I2C registers cannot be read while a NVM Commit operation is taking place. The NVMCOMMIT operation can only carried out when the Always On Clock is active. The Always On Clock can be kept running after lock by setting the AONAFTERLOCK bit or by forcing the Always On Clock Enable using the CLKDBG1 register.
12	regcommit	R/WSC	Oh	REG Commit to NVM SRAM Array. The REGCOMMIT bit is used to initiate a transfer from the on-chip registers back to the corresponding location in the NVM SRAM Array. The REGCOMMIT bit is automatically cleared to 0 when the transfer is complete. The particular page of SRAM used as the destination for the transfer is selected by the REGCOMMIT_PAGE register.
11	regcommit_page	R/W	Oh	Decide which page of EEPROM to use for the Register/NVM commit operations. Note= this register is used only after the initial power-up configuration from EEPROM if any. Once power-up configuration is done with the page chosen by EEPROMSEL the value of this register will be used for subsequent configurations using Register/NVM commit operations. Oh = Page 0 1h = Page 1
10	mask_inc_dec_iod_ch4	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively. 0h = IOD CH4 excluded 1h = IOD CH4 included
9	mask_inc_dec_iod_ch3	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively. Oh = IOD CH3 excluded 1h = IOD CH3 included

Table 22. GENERIC3 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
8	mask_inc_dec_iod_ch2	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = IOD CH2 excluded
				1h = IOD CH2 included
7	mask_inc_dec_iod_ch1	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = IOD CH1 excluded
				1h = IOD CH1 included
6	mask_inc_dec_fod_ch4	R/W	0h	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = FOD CH4 excluded
				1h = FOD CH4 included
5	mask_inc_dec_fod_ch3	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = FOD CH3 excluded
				1h = FOD CH3 included
4	mask_inc_dec_fod_ch2	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = FOD CH2 excluded
				1h = FOD CH2 included
3	mask_inc_dec_fod_ch1	R/W	Oh	Bit mask for GPIO input function FREQ_INC, FREQ_DEC. Increase or decrease using step size defined by iod_size and fod_size respectively.
				0h = FOD CH1 excluded
				1h = FOD CH1 included
2	fod_iod_dec	R/WSC	Oh	Register decrement for FOD/IOD, writing 1 decrements the FOD/IOD word by the fod_size/iod_size
1	fod_iod_inc	R/WSC	0h	Register increment for FOD/IOD, writing 1 increments the FOD/IOD word by the fod_size/iod_size
0	fod_iod_reg_mode	R/W	0h	Enable increment/decrement for FOD/IOD controlled by writing registers fod_iod_inc/fod_iod_dec rather than through pins
				0h = Pin
				1h = Reg

8.6.1.5 POWER0 Register (Address = 4h) [reset = 54h]

POWER0 is shown in Figure 38 and described in Table 23.

Return to Summary Table.

Figure 38. POWER0 Register

Table 23. POWER0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-8	RESERVED	R/W	0h	Reserved.
7	pdn_ch4	R/W	0h	Powers Down CH4 LDO.
				0h = Active
				1h = Power down
6	pdn_ch4_fod	R/W	1h	Powers Down CH4 FOD.
				0h = Active
				1h = Power down
5	pdn_ch3	R/W	0h	Powers Down CH3 LDO.
				0h = Active
				1h = Power down
4	pdn_ch3_fod	R/W	1h	Powers Down CH3 FOD.
				0h = Active
				1h = Power down
3	pdn_ch2	R/W	0h	Powers Down CH2 LDO.
				0h = Active
				1h = Power down
2	pdn_ch2_fod	R/W	1h	Powers Down CH2 FOD.
				0h = Active
				1h = Power down
1	pdn_ch1	R/W	0h	Powers Down CH1 LDO.
				0h = Active
				1h = Power down
0	pdn_ch1_fod	R/W	0h	Powers Down CH1 FOD.
				0h = Active
				1h = Power down

8.6.1.6 POWER1 Register (Address = 5h) [reset = 30h]

POWER1 is shown in Figure 39 and described in Table 24.

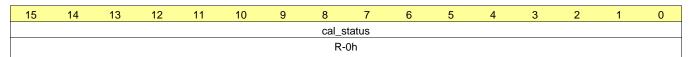
Return to Summary Table.

Figure 39. POWER1 Register

15	14	13	12	11	10	9	8
		RESERVED	pdn_pll_vcobuf 2	pdn_pll_vco	pdn_pll_vcobuf		
		R/W-0h			R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
pdn_pll_cp	pdn_pll_lockdet	pdn_pll_psfbb	pdn_pll_psfba	pdn_pll_fodclk	pdn_pll_pfd	pdn_pll_psfb	pdn_ref
R/W-0h	R/W-0h	R/W-1h	R/W-1h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 24. POWER1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-11	RESERVED	R/W	0h	Reserved.
10	pdn_pll_vcobuf2	R/W	Oh	Power down of VCO buffer LDO. 0h = Active 1h = Power down
9	pdn_pll_vco	R/W	Oh	Power down of VCO LDO. 0h = Active 1h = Power down
8	pdn_pll_vcobuf	R/W	Oh	Power down of VCO buffer. 0h = Active 1h = Power down
7	pdn_pll_cp	R/W	Oh	Power down of charge pump LDO. 0h = Active 1h = Power down
6	pdn_pll_lockdet	R/W	Oh	Power down of PLL lock detector. 0h = Active 1h = Power down
5	pdn_pll_psfbb	R/W	1h	Power down of PLL feedback pre-scaler. 0h = Active 1h = Power down
4	pdn_pll_psfba	R/W	1h	Active low enable of prescaler-a. Active (low) during PoR and '1' later. 1h = Power Down PFD. 0h = Otherwise. SM Signal. Refer Digital Review Document
3	pdn_pll_fodclk	R/W	0h	Active low enable for clock path output to all FODs. Active (low) during PoR and '1' later. 1h = Power Down PFD. 0h = Otherwise. SM Signal. Refer Digital Review Document
2	pdn_pll_pfd	R/W	0h	Active low enable of PFD. Inactive (high) till calibration and '0' afterwards. 1h = Power Down PFD. 0h = Otherwise. SM Signal. Refer Digital Review Document
1	pdn_pll_psfb	R/W	0h	Active low enable of prescaler. Active (low) during PoR and '1' later. 1h = Powers Down PS, 0h = Otherwise. SM Signal. Refer Digital Review Document
0	pdn_ref	R/W	0h	Powers Down Input Path LDO. Kill Switch. Do not use. 1h = PD, 0h = Otherwise.



8.6.1.7 STATUSO Register (Address = 6h) [reset = 0h]

STATUS0 is shown in Figure 40 and described in Table 25.

Return to Summary Table.

Figure 40. STATUS0 Register

Table 25. STATUS0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	cal_status	R	0h	Calibration word.

8.6.1.8 STATUS1 Register (Address = 7h) [reset = 0h]

STATUS1 is shown in Figure 41 and described in Table 26.

Return to Summary Table.

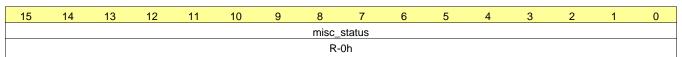
Figure 41. STATUS1 Register

15	14	13	12	11	10	9	8
	RESE	RVED		lock_det_a	pll_vco_cal_rea dy	nvm_rd_error	nvm_wr_error
	R-0h				R-0h	RC-0h	RC-0h
7	6	5	4	3	2	1	0
rd_error	wr_error	nvmcrcerr	nvmbusy	cal_done	config_done	unlock_s	lock_det
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R/WEX-0h	R-0h

Table 26. STATUS1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-12	RESERVED	R	0h	Reserved.
11	lock_det_a	R	0h	Analog lock detect
10	pll_vco_cal_ready	R	0h	VCO Buffer LDO POR can be read through this register
9	nvm_rd_error	RC	0h	Occurs when any NVM operation is issued during Read Phase of the NVM. Read Phase of the NVM includeS CRC calculation or a simple read through RD NVM Addr/Data registers from any NVM location or a NVM commit operation
8	nvm_wr_error	RC	Oh	Occurs when any NVM operation is issued during Write Phase of the NVM. Write Phase of the NVM includes a simple write into any NVM location through WR NVM Addr/Data registers or a Register Commit operation
7	rd_error	R	0h	Reading using the I2C interface with an address above the address of the last register gives this error.
6	wr_error	R	0h	Writing using the I2C interface with an address above the address of the last register gives this error.
5	nvmcrcerr	R	0h	NVM CRC Error Indication. The NVMCRCERR bit is set to 1 if a CRC Error has been detected when reading back from on-chip EEPROM during device configuration. This bit will be cleared when [TBD]

Table 26. STATUS1 Register Field Descriptions (continued)


BIT	FIELD	TYPE	RESET	DESCRIPTION
4	nvmbusy	R	Oh	NVM Program Busy Indication. The NVMBUSY bit is 1 during an on- chip EEPROM Erase/Program cycle. While NVMBUSY is 1 the on- chip EEPROM cannot be accessed. When the NVM operation is completed this bit will be cleared. NVM related operations are REGcommit NVMcommit CRC calculation or simple Read/Write through RD/WR NVM
3	cal_done	R	0h	1h = Calibration (Two rounds of Amplitude followed by calibration) is done.
2	config_done	R	0h	1 h = Configuration (CRC Check followed by transfer of EEPROM to registers) is done.
1	unlock_s	R/WEX	Oh	Lock Detect Sticky Bit. This indicates the loss of lock of the PLL and this is cleared only by re-calibration or a hard reset through RESETN/SYNC pin Oh = locked 1h = unlocked
0	lock_det	R	Oh	When the calibration is done frequency may or may not be locked. 1h = Frequency is locked. 0h = Otherwise 0h = unlocked 1h = locked

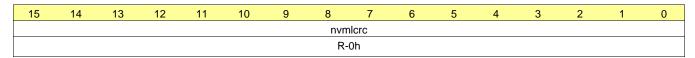
8.6.1.9 STATUS2 Register (Address = 8h) [reset = 0h]

STATUS2 is shown in Figure 42 and described in Table 27.

Return to Summary Table.

Figure 42. STATUS2 Register

Table 27. STATUS2 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	misc_status	R	0h	Miscellaneous status word.

8.6.1.10 STATUS3 Register (Address = 9h) [reset = 0h]

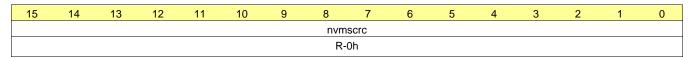
STATUS3 is shown in Figure 43 and described in Table 28.

Return to Summary Table.

Figure 43. STATUS3 Register

Table 28. STATUS3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	nvmlcrc	R	0h	The NVMLCRC register holds the Live CRC byte that has been calculated while reading on-chip EEPROM.



8.6.1.11 EEPROM0 Register (Address = Ah) [reset = 0h]

EEPROM0 is shown in Figure 44 and described in Table 29.

Return to Summary Table.

Figure 44. EEPROM0 Register

Table 29. EEPROM0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	nvmscrc	R		Stored CRC value. This value is used to compare with the computed CRC and to update the crc status bit

8.6.1.12 EEPROM1 Register (Address = Bh) [reset = 0h]

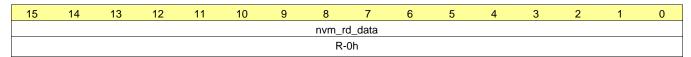
EEPROM1 is shown in Figure 45 and described in Table 30.

Return to Summary Table.

Figure 45. EEPROM1 Register

Table 30. EEPROM1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-6	RESERVED	R/W	0h	Reserved.
5-0	nvm_rd_addr	R/W	0h	Writing an address into the NVM WR Address starts the read loop. This register will contain the data read from the EEPROM at the address provided by the NVM WR Address. The address is auto-incremented and subsequent read from the NVM RD Data register will give the data from the next EEPROM location.



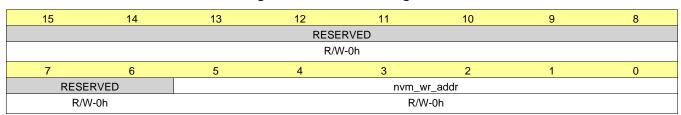
8.6.1.13 EEPROM2 Register (Address = Ch) [reset = 0h]

EEPROM2 is shown in Figure 46 and described in Table 31.

Return to Summary Table.

Figure 46. EEPROM2 Register

Table 31. EEPROM2 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	nvm_rd_data	R	Oh	Reading from this register will return the data present at the EEPROM from the immediate next address location than what was programmed in the NVM RD Address register since writing into NVM RD Address register already returned the data from EEPROM from the written address. Subsequent read from this register will cause the address to be auto-incremented and cause a read from the next EEPROM location.

8.6.1.14 EEPROM3 Register (Address = Dh) [reset = 0h]

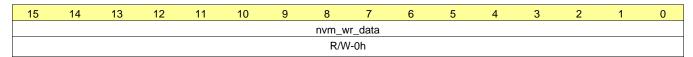
EEPROM3 is shown in Figure 47 and described in Table 32.

Return to Summary Table.

Figure 47. EEPROM3 Register

Table 32. EEPROM3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-6	RESERVED	R/W	0h	Reserved.
5-0	nvm_wr_addr	R/W	Oh	Writing an address into the NVM WR Address starts the write loop. But Writing a data into the NVM WR Data register will program the EEPROM with that data at the address provided by writing into NVM WR Address initially.



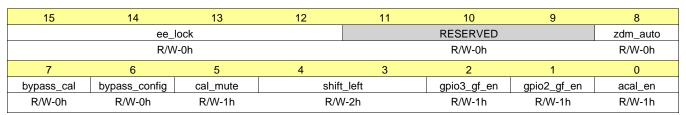
8.6.1.15 EEPROM4 Register (Address = Eh) [reset = 0h]

EEPROM4 is shown in Figure 48 and described in Table 33.

Return to Summary Table.

Figure 48. EEPROM4 Register

Table 33. EEPROM4 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	nvm_wr_data	R/W	Oh	Writing a data into this register will program the EEPROM with the written data at the address given by NVM WR Address. Subsequent write into this register will cause the address to be auto-incremented and cause a program at the next EEPROM location.

8.6.1.16 STARTUPO Register (Address = Fh) [reset = 37h]

STARTUP0 is shown in Figure 49 and described in Table 34.

Return to Summary Table.

Figure 49. STARTUP0 Register

Table 34. STARTUP0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION	
15-12	ee_lock	R/W	Oh Locks EEPROM for regcommit and EEPROM write open unlock, write 5h, any other value to lock.		
11-9	RESERVED	R/W	0h	Reserved.	
8	zdm_auto	R/W	Oh	Setting this bit 1 will allow state machine to control the val- pll_ndiv and pll_psfb internally in Normal/ZDM mode of calibrat set 0 the user has to manually program the pll_ndiv and pll_psft	
7	bypass_cal	R/W	0h	Bypass the calibration. By default two rounds of calibrations (AC followed by FC) will be done. Setting this bit to 1 will bypass the calibration.	
6	bypass_config	R/W	Oh Bypass the configuration. Note that on PoR this bit is a hence configuration will happen. However after the first con this bit can be set and apply the soft/pin reset so that con will be bypassed		
5	cal_mute	R/W	1h	Mute the output during the calibration. 0h = Outputs stay active 1h = Outputs muted	

Table 34. STARTUP0 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
4-3	shift_left	R/W	2h	Divide the ref clock (PFD clock) during calibration by 2 to the power of value
				0h = 1
				1h = 2
				2h = 4
				3h = 8
2	gpio3_gf_en	R/W	1h	Enable the glitch filter for SCL, GPIO3.
				0h = Disabled
				1h = Enabled
1	gpio2_gf_en	R/W	1h	Enable the glitch filter for SDA, GPIO2.
				0h = Disabled
				1h = Enabled
0	acal_en	R/W	1h	Enable automatic frequency calibration at power-up or EEPROM reload.
				0h = Disabled
				1h = Enabled

8.6.1.17 STARTUP1 Register (Address = 10h) [reset = 921Fh]

STARTUP1 is shown in Figure 50 and described in Table 35.

Return to Summary Table.

Figure 50. STARTUP1 Register

15	14	13	12	11	10	9	8	
		pll_lock_dly			ac_init_dly			
R/W-12h					R/W-10h			
7	6	5	4	3	2	1	0	
ac_init_dly			cp_dly					
	R/W-10h		R/W-1Fh					

Table 35. STARTUP1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-11	pll_lock_dly	R/W	12h	Wait time before lock detect goes high after the calibration. Expected value is ~1ms. The actual delay will be 256*T*{programmed value}. Where T is the smclk period.
10-5	ac_init_dly	R/W	10h	Peak detector settlig time. i.e. pll_en_peakdet_vco going high to first cross code change. Expected value is 1.6us. The actual delay will be 4*T*{programmed value}. Where T is the smclk period.
4-0	cp_dly	R/W	1Fh	Delay from vtune driver enable (pll_en_vtune_drv) going high to peak detector enable (pll_en_peakdet_vco) going high. Expected delay is 200us. The actual delay will be 64*T*{programmed value}. Where T is the smclk period.

8.6.1.18 STARTUP2 Register (Address = 11h) [reset = 6C4h]

STARTUP2 is shown in Figure 51 and described in Table 36.

Return to Summary Table.

Figure 51. STARTUP2 Register

15	14	13	12	11	10	9	8
RESERVED		switch_dly err_cnt					
R/W-0h		R/W-0h R/W-6h					
7	6	5	4	3	2	1	0
fc_se	fc_setl_dly			ac_cmp_dly			
R/V	N-3h						

Table 36. STARTUP2 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15	RESERVED	R/W	0h	Reserved.
14-11	switch_dly	R/W	0h	Indicates number of SM clocks to wait before SSM clock is turned off after all the active signals are low. Internally scaled up by 2 ⁶
10-8	err_cnt	R/W	6h	Indicates how long to wait for *b4* outputs before declaring lock detect. in PFD clocks
				0h = 32
				1h = 64
				2h = 128
				3h = 256
7-6	fc_setl_dly	R/W	3h	Delay between two cap codes in terms of REFCLK period. Expected value is 1 us. The actual delay will be 32*T*{programmed value}. Where T is the refclk period.
5-0	ac_cmp_dly	R/W	4h	Delay between successive cross code change. Expected value is 1us. The actual delay will be 4*T*{programmed value}. Where T is the smclk period.

8.6.1.19 REV0 Register (Address = 18h) [reset = 601h]

REV0 is shown in Figure 52 and described in Table 37.

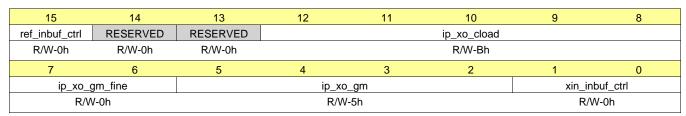
Return to Summary Table.

Figure 52. REV0 Register

15	14	13	12	11	10	9	8		
	RESERVED								
R/W-6h									
7	6	5	4	3	2	1	0		
	rev_reg								
	R-1h								

Table 37. REV0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-8	Reserved	R	06h Reserved	
7-0	rev_reg	R	1h	Revision ID register.
				1h = CDCl6214



8.6.1.20 INPUT0 Register (Address = 1Ah) [reset = B14h]

INPUT0 is shown in Figure 53 and described in Table 38.

Return to Summary Table.

Figure 53. INPUT0 Register

Table 38. INPUTO Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15	ref_inbuf_ctrl	R/W	0h Reference input buffer select.	
				0h = LVCMOS
				1h = AC-Differential
14	RESERVED	R/W	0h	RESERVED
13	RESERVED	R/W	0h	RESERVED

Table 38. INPUT0 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
12-8	ip_xo_cload	R/W	Bh	Selects load cap for XO (up to 9 pF) in 5 bit binary selection). Step size is about 200 fF.
				0h = 3.0 pF
				1h = 3.2 pF
				2h = 3.4 pF
				3h = 3.6 pF
				4h = 3.8 pF
				5h = 4.0 pF
				6h = 4.2 pF
				7h = 4.4 pF
				8h = 4.6 pF
				9h = 4.8 pF
				Ah = 5.0 pF
				Bh = 5.2 pF
				Ch = 5.4 pF
				Dh = 5.6 pF
				Eh = 5.8 pF
				Fh = 6.0 pF
				10h = 6.2 pF
				11h = 6.4 pF
				12h = 6.5 pF
				13h = 6.7 pF
				14h = 6.9 pF
				15h = 7.1 pF
				16h = 7.3 pF
				17h = 7.5 pF
				18h = 7.7 pF
				19h = 7.9 pF
				1Ah = 8.1 pF
				1Bh = 8.3 pF
				1Ch = 8.5 pF
				1Dh = 8.7 pF
				1Eh = 8.9 pF
				1Fh = 9.0 pF
7-6	ip_xo_gm_fine	R/W	0h	Tune XO bias LSB current value from default to 1/3.

Table 38. INPUT0 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
5-2	ip_xo_gm	R/W	5h	Tune bias current for XO. Gm programmability. Typical values:
				0h = Disabled
				1h = 14 μA
				2h = 29 μA
				3h = 44 μA
				$4h = 59 \mu A$
				5h = 148 μA
				6h = 295 μA
				7h = 443 μA
				8h = 591 μA
				9h = 884 μA
				Ah = 1177 μA
				Bh = 1468 μA
				Ch = 1758 μA
1-0	xin_inbuf_ctrl	R/W	0h	Input buffer select.
				0h = XO
				1h = CMOS
				2h = DIFF

nii Documentation Feedback

8.6.1.21 INPUT1 Register (Address = 1Bh) [reset = 0h]

INPUT1 is shown in Figure 54 and described in Table 39.

Return to Summary Table.

Figure 54. INPUT1 Register

15	14	13	12	11	10	9	8			
ip_en_pri_diff_b uf	ip_byp_en_ch4	ip_byp_en_ch3	ip_byp_en_ch2	ip_byp_en_ch1	ip_byp_en_y0	ip_byp_mux	ip_rst_rdiv			
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h			
7	6	5	4	3	2	1	0			
	ip_rdiv									
	R/W-0h									

Table 39. INPUT1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15	ip_en_pri_diff_buf	R/W	0h	Refer State Machine Document. Refer State Machine Document
14	ip_byp_en_ch4	R/W	Oh	Bypass path buffer enable for CH4. This is required to drive a bypass signal using ch4_iod_mux. Oh = disabled
				1h = enabled
13	ip_byp_en_ch3	R/W	Oh	Bypass path buffer enable for CH3. This is required to drive a bypass signal using ch3_iod_mux.
				0h = disabled
				1h = enabled
12	ip_byp_en_ch2	R/W	0h	Bypass path buffer enable for CH2. This is required to drive a bypass signal using ch2_iod_mux.
				0h = disabled
				1h = enabled
11	ip_byp_en_ch1	R/W	Oh	Bypass path buffer enable for CH1. This is required to drive a bypass signal using ch1_iod_mux.
				0h = disabled
				1h = enabled
10	ip_byp_en_y0	R/W	0h	Enable input clock to come out on Y0 buffer.
9	ip_byp_mux	R/W	0h	Selects Y0 clock between "REF_CLK" and "PFD_CLK".
				0h = REF
				1h = PFD
8	ip_rst_rdiv	R/W	0h	Resets flops in ref divider. Active (high) during power on reset or SWRST or pin reset and inactive afterwards. Refer State Machine Document
7-0	ip_rdiv	R/W	0h	Reference clock divider. 0= Doubler ON, 1= /1, 2= /2. etc
				0h = x2
				1h = /1
				2h = /2
				3h = /3
				4h = /4
				5h = /5
				FFh = /255

8.6.1.22 INPUT_DBG0 Register (Address = 1Ch) [reset = 0h]

INPUT_DBG0 is shown in and described in Table 40.

Return to Summary Table.

Figure 55. INPUT_DBG0 Register

15	14	13	12	11	10	9	8	
RESERVED RESERVED				RESERVED				
R/W-0	h	R/W	/-0h		R/W-0h			
7	6	5	4	3	2	1	0	
RESERV	/ED	ip_ldo_load_en	ip_en_test_dblr clk	ip_en_test_pfdc lk	ip_en_test_refcl k	ip_en_test_smc lk	ip_en_test_XO	
R/W-0	h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	

Table 40. INPUT_DBG0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R/W	0h	Reserved.
13-12	RESERVED	R/W	0h	RESERVED
11-9	RESERVED	R/W	0h	RESERVED
8-6	RESERVED	R/W	0h	RESERVED
5	ip_ldo_load_en	R/W	0h	Switches on Input path LDO output load (1K resistor).
4	ip_en_test_dblrclk	R/W	0h	Enable xo doubler clock to come out on test point.
3	ip_en_test_pfdclk	R/W	0h	Enable PFD clock to come out on test point.
2	ip_en_test_refclk	R/W	0h	Enable Ref clock (Before Doubler) to come out on test point.
1	ip_en_test_smclk	R/W	0h	Enable SM clock to come out on test point.
0	ip_en_test_XO	R/W	0h	Enables XO bias current to come out on XO. XI is pulled to ground internally.

8.6.1.23 PLL0 Register (Address = 1Dh) [reset = Ch]

PLL0 is shown in Figure 56 and described in Table 41.

Return to Summary Table.

Figure 56. PLL0 Register

15	14	13	12	11	10	9	8
pll_p	osfb	pll_ndiv					
R/W	/-0h	R/W-Ch					
7	6	5	4	3	2	1	0
	pll_ndiv						
	R/W-Ch						

Table 41. PLL0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-14	pll_psfb	R/W	0h Programming bits for PLL feedback pre-scaler.	
				0h = /4
				1h = /5
				2h = /6
13-0	pll_ndiv	R/W	Ch	Feedback divider, must be at least 6h.

8.6.1.24 PLL1 Register (Address = 1Eh) [reset = 5140h]

PLL1 is shown in Figure 57 and described in Table 42.

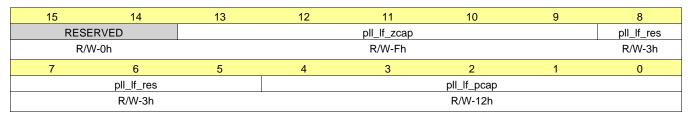
Return to Summary Table.

Figure 57. PLL1 Register

15	14	13	12	11	10	9	8
	pll_cp_up					pll_c	p_dn
	R/W-14h					R/W	-14h
7	6	5	4	3	2	1	0
	pll_cp_dn			pll_	psb	pll_	psa
	R/W	-14h		R/W	/-0h	R/W	/-0h

Table 42. PLL1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-10	pll_cp_up	R/W	14h	Programming bits for up current of CP. 0h = 0.0 mA 1h = 0.1 mA 2h = 0.2 mA 3h = 0.3 mA [] 1Fh = 3.1 mA 37h = 3.2 mA 38h = 3.3 mA [] 3Dh = 3.8 mA 3Eh = 3.9 mA 3Fh = 4.0 mA
9-4	pll_cp_dn	R/W	14h	Programming bits for down current of CP. 0h = 0.0 mA 1h = 0.1 mA 2h = 0.2 mA 3h = 0.3 mA [] 1Fh = 3.1 mA 37h = 3.2 mA 38h = 3.3 mA [] 3Dh = 3.8 mA 3Eh = 3.9 mA 3Fh = 4.0 mA
3-2	pll_psb	R/W	Oh	Programming bits for pre-scaler B. Oh = /4 1h = /5 2h = /6
1-0	pll_psa	R/W	0h	Programming bits for pre-scaler A. 0h = /4 1h = /5 2h = /6



8.6.1.25 PLL2 Register (Address = 1Fh) [reset = 1E72h]

PLL2 is shown in Figure 58 and described in Table 43.

Return to Summary Table.

Figure 58. PLL2 Register

Table 43. PLL2 Register Field Descriptions

	Table 45.1 ELZ Register Field Descriptions						
BIT	FIELD	TYPE	RESET	DESCRIPTION			
15-14	RESERVED	R/W	0h	Reserved.			
13-9	pll_lf_zcap	R/W	Fh	Programming bits of cap value of zero of loop-filter.			
				0h = 000 pF			
				1h = 030 pF			
				2h = 060 pF			
				3h = 090 pF			
				4h = 120 pF			
				5h = 150 pF			
				6h = 180 pF			
				7h = 210 pF			
				8h = 240 pF			
				9h = 270 pF			
				Ah = 300 pF			
				Bh = 330 pF			
				Ch = 360 pF			
				Dh = 390 pF			
				Eh = 420 pF			
				Fh = 450 pF			
				10h = 480 pF			
				11h = 510 pF			
				12h = 540 pF			
				13h = 570 pF			
				14h = 600 pF			

Table 43. PLL2 Register Field Descriptions (continued)

BIT	FIELD	TYPE	RESET	DESCRIPTION
8-5	pll_lf_res	R/W	3h	Programming bits of res value of zero of loop-filter.
				0h = open $kΩ$
				1h = 00.5 kΩ
				2h = 01.5 kΩ
				3h = 02.5 kΩ
				4h = 03.5 kΩ
				5h = 04.5 kΩ
				6h = 05.5 kΩ
				$7h = 06.5 \text{ k}\Omega$
				$8h = 07.5 \text{ k}\Omega$
				$9h = 08.5 \text{ k}\Omega$
				Ah = $09.5 \text{ k}\Omega$
				Bh = $10.5 \text{ k}\Omega$
				Ch = 11.5 kΩ
4-0	pll_lf_pcap	R/W	12h	Programming bits of cap value of pole of loop-filter.
				0h = 00.0 pF
				1h = 00.5 pF
				2h = 01.5 pF
				3h = 02.5 pF
				4h = 03.5 pF
				5h = 04.5 pF
				6h = 05.5 pF
				7h = 06.5 pF
				8h = 07.5 pF
				9h = 08.5 pF
				Ah = 09.5 pF
				Bh = 10.5 pF
				Ch = 11.5 pF
				Dh = 12.5 pF
				Eh = 13.5 pF
				Fh = 14.5 pF
				10h = 15.5 pF
				11h = 16.5 pF
				12h = 17.5 pF
				13h = 18.5 pF
				14h = 19.5 pF

8.6.1.26 PLL4 Register (Address = 21h) [reset = 7h]

PLL4 is shown in Figure 59 and described in Table 44.

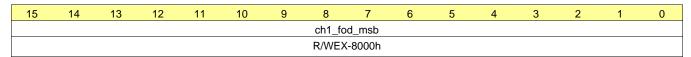
Return to Summary Table.

Figure 59. PLL4 Register

15	14	13	12	11	10	9	8
RESERVED	RESERVED			RESERVED		RESERVED	
R/W-0h	R/W-0h			R/W-0h		R/W-0h	
7	6	5	4	3	2	1	0
RESERVED	pll_pfd_dly_ctrl		pll_lockdet_window		ow	pll_lockdet_wait	
R/W-0h	R/W-0h		R/W-1h			R/	W-3h

Table 44. PLL4 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-7	RESERVED	R/W	0h	Reserved.
6-5	pll_pfd_dly_ctrl	R/W	0h	Programming of PFD reset delay.
				0h = 2
				1h = 6
				2h = 10
				3h = 14
4-2	pll_lockdet_window	R/W	1h	Programmability of PFD input and output time window for lock detect.
				0h = disabled
				1h = typ 1.4 ns
				2h = typ 2.6 ns
				3h = typ 3.9 ns
				4h = typ 5.2 ns
				5h = typ 6.4 ns
				6h = typ 7.6 ns
				7h = typ 8.9 ns
1-0	pll_lockdet_wait	R/W	3h	Programmability of analog lock detect timer. In PFD cycles
				0h = 1
				1h = 16
				2h = 64
				3h = 128



8.6.1.27 CH1_CTRL0 Register (Address = 23h) [reset = 8000h]

CH1_CTRL0 is shown in Figure 60 and described in Table 45.

Return to Summary Table.

Figure 60. CH1_CTRL0 Register

Table 45. CH1_CTRL0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	ch1_fod_msb	R/WEX		MSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.28 CH1_CTRL1 Register (Address = 24h) [reset = 0h]

CH1_CTRL1 is shown in Figure 61 and described in Table 46.

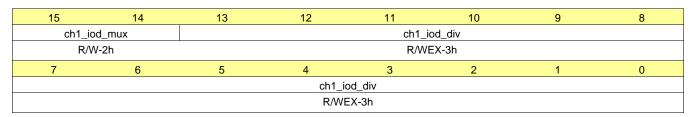
Return to Summary Table.

Figure 61. CH1_CTRL1 Register

15	14	13	12	11	10	9	8			
	RESERVED									
	R/W-0h									
7	6	5	4	3	2	1	0			
	ch1_fod									
	R/WEX-0h									

Table 46. CH1_CTRL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R/W	0h	Reserved.
8-0	ch1_fod	R/WEX	0h	LSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency



8.6.1.29 CH1_CTRL2 Register (Address = 25h) [reset = 8003h]

CH1_CTRL2 is shown in Figure 62 and described in Table 47.

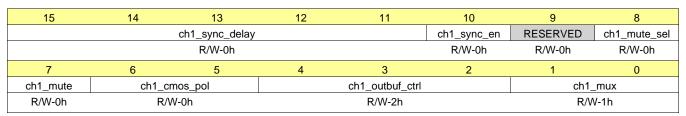
Return to Summary Table.

Figure 62. CH1_CTRL2 Register

Table 47. CH1_CTRL2 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-14	ch1_iod_mux	R/W	2h	Input Clock selection for IOD.
				0h = PSA
				1h = PSB
				2h = FOD
				3h = REF
13-0	ch1_iod_div	R/WEX	3h	IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV

Copyright © 2017–2018, Texas Instruments Incorporated Product Folder Links: *CDCI6214*



8.6.1.30 CH1_CTRL3 Register (Address = 26h) [reset = 9h]

CH1_CTRL3 is shown in Figure 63 and described in Table 48.

Return to Summary Table.

Figure 63. CH1_CTRL3 Register

Table 48. CH1_CTRL3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-11	ch1_sync_delay	R/W	Oh	Sync Delay cycles of IOD Input Clock. One cycle is a period of the selected pre-scaler clock.
10	ch1_sync_en	R/W	0h	Enables SYNC for the channel.
				0h = Disabled
				1h = Enabled
9	RESERVED	R/W	0h	Reserved.
8	ch1_mute_sel	R/W	0h	Mute selection for Output Channel.
				0h = P=L N=H
				1h = P=H N=L
7	ch1_mute	R/W	0h	To mute the output on this channel. When op_ovrd =1 - this bit will directly mute the output decoder else based on the 'mute' register bit value this signal will be driven high during the calibration. Refer State Machine Document
4-2	ch1_outbuf_ctrl	R/W	2h	Select the output buffer format.
				0h = disabled
				1h = LVDS ⁽¹⁾
				2h = HCSL
				3h = CML
				4h = LVPECL
1-0	ch1_mux	R/W	1h	Output Clock Selection.
				1h = CH1
				2h = CH2

⁽¹⁾ For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 69 and Table 68 accordingly.

8.6.1.31 CH1_CTRL4 Register (Address = 27h) [reset = 679h]

CH1_CTRL4 is shown in Figure 64 and described in Table 49.

Return to Summary Table.

Figure 64. CH1_CTRL4 Register

15	14	13	12	11	10	9	8
ch1_fod_dlymo de	ch1_fod_passth rough	ch1_fod_rst	ch1_ssc_count er_src		ch1_ssc_counter		ch1_ssc_type
R/W-0h	R/W-0h	R/W-0h	R/W-0h R/W-0h		R/W-3h		
7	6	5	4	3	2	1	0
ch1_ssc	ch1_ssc_spread ch1_ssc_fmod		ch1_ssc_en	RESERVED	RESERVED	ch1_glitchless_ en	
R/V	V-1h	R/W-3h		R/W-1h	R/W-0h	R/W-0h	R/W-1h

Table 49. CH1_CTRL4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ch1_fod_dlymode	R/W	0h	Sets FOD in delay mode.
				0h = Synthesis
				1h = Delay
14	ch1_fod_passthrough	R/W	0h	Bypassed all Registers in the FOD.
				0h = Normal
				1h = Bypass
13	ch1_fod_rst	R/W	0h	Resets FOD.
				0h = Active
				1h = Reset
12	ch1_ssc_counter_src	R/W	0h	SSC counter clock source.
				0h = FOD_CLK
				1h = REF_CLK
11-9	ch1_ssc_counter	R/W	3h	Sets the division Value of SSC Clock.
8	ch1_ssc_type	R/W	0h	Sets SSC Type.
				Oh = center
				1h = down
7-6	ch1_ssc_spread	R/W	1h	Sets the SSC Spread for SSC Modulation. All in percent of carrier frequency down / center spread.
				0h = -0.5 or +/- 0.25
				1h = -1.0 or +/- 0.5
				2h = -2.0 or +/- 1.0
				3h = -5.0 or +/-2.5
5-4	ch1_ssc_fmod	R/W	3h	Sets number of cycles for SSC Modulation.
				0h = 240
				1h = 400
				2h = 520
				3h = 556
3	ch1_ssc_en	R/W	1h	Enables SSC.
				0h = SSC Off
				1h = SSC On
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED

Table 49. CH1_CTRL4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	ch1_glitchless_en	R/W	1h	Enables Glitchless switching for Output Channel.
				0h = Immediate
				1h = Glitch-less

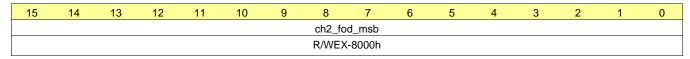
8.6.1.32 CH1_CTRL5 Register (Address = 28h) [reset = 8h]

CH1_CTRL5 is shown in Figure 65 and described in Table 50.

Return to Summary Table.

Figure 65. CH1_CTRL5 Register

Table 50. CH1_CTRL5 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-4	RESERVED	R/W	0h	Reserved.
3	ch1_1p8vdet	R/W	1h	Specify supply on the channel. Oh = 2.5 V or 3.3 V 1h = 1.8 V
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED
0	RESERVED	R/W	0h	RESERVED

8.6.1.33 CH2_CTRL0 Register (Address = 29h) [reset = 8000h]

CH2_CTRL0 is shown in Figure 66 and described in Table 51.

Return to Summary Table.

Figure 66. CH2_CTRL0 Register

Table 51. CH2_CTRL0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	ch2_fod_msb	R/WEX	8000h	MSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.34 CH2_CTRL1 Register (Address = 2Ah) [reset = 0h]

CH2_CTRL1 is shown in Figure 67 and described in Table 52.

Return to Summary Table.

Figure 67. CH2_CTRL1 Register

15	14	13	12	11	10	9	8
	RESERVED						
R/W-0h						R/WEX-0h	
7	6	5 4 3 2 1					
ch2_fod							
R/WEX-0h							

Table 52. CH2_CTRL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R/W	0h	Reserved.
8-0	ch2_fod	R/WEX	0h	LSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.35 CH2_CTRL2 Register (Address = 2Bh) [reset = 0h]

CH2_CTRL2 is shown in Figure 68 and described in Table 53.

Return to Summary Table.

Figure 68. CH2_CTRL2 Register

15	14	13	12	11	10	9	8
ch2_iod_mux			ch2_iod_div				
R/W	/-0h	R/WEX-0h					
7	6	5	4	3	2	1	0
ch2_iod_div							
	R/WEX-0h						

Table 53. CH2_CTRL2 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-14	ch2_iod_mux	R/W	0h	Input Clock selection for IOD.
				0h = PSA
				1h = PSB
				2h = FOD
				3h = REF
13-0	ch2_iod_div	R/WEX	0h	IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV

8.6.1.36 CH2_CTRL3 Register (Address = 2Ch) [reset = 8h]

CH2_CTRL3 is shown in Figure 69 and described in Table 54.

Return to Summary Table.

Figure 69. CH2_CTRL3 Register

15	14	13	12	11	10	9	8
	ch2_sync_delay				ch2_sync_en	RESERVED	ch2_mute_sel
		R/W-0h			R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
ch2_mute	ch2_cmos_pol		ch2_outbuf_ctrl		1	ch2_mux	
R/W-0h	R/W-0h		R/W-2h			R/W-0h	

Table 54. CH2_CTRL3 Register Field Descriptions

	Table 54. CH2_CTRL3 Register Field Descriptions							
BIT	FIELD	TYPE	RESET	DESCRIPTION				
15-11	ch2_sync_delay	R/W	0h	Sync Delay cycles of IOD Input Clock. One cycle is a period of the selected pre-scaler clock.				
10	ch2_sync_en	R/W	0h	Enables SYNC for the channel.				
				0h = Disabled				
				1h = Enabled				
9	RESERVED	R/W	0h	Reserved.				
8	ch2_mute_sel	R/W	0h	Mute selection for Output Channel.				
				0h = P=L N=H				
				1h = P=H N=L				
7	ch2_mute	R/W	Oh	To mute the output on this channel. When op_ovrd =1 - this bit will directly mute the output decoder else based on the 'mute' register bit value this signal will be driven high during the calibration. Refer State Machine Document				
6-5	ch2_cmos_pol	R/W	0h	programmability of output CMOS buffer polarity.				
				0h = P+ N+				
				1h = P+ N-				
				2h = P- N+				
				3h = P- N-				
4-2	ch2_outbuf_ctrl	R/W	2h	Select the output buffer format.				
				0h = disabled				
				1h = LVDS ⁽¹⁾				
				2h = HCSL				
				3h = CML				
				4h = LVPECL				
				5h = CMOSPN				
				6h = CMOSP				
				7h = CMOSN				
1-0	ch2_mux	R/W	0h	Output Clock Selection.				
				0h = CH1				
				1h = CH2				
				2h = CH3				

⁽¹⁾ For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 69 and Table 68 accordingly.

8.6.1.37 CH2_CTRL4 Register (Address = 2Dh) [reset = 71h]

CH2_CTRL4 is shown in Figure 70 and described in Table 55.

Return to Summary Table.

Figure 70. CH2_CTRL4 Register

15	14	13	12	11	10	9	8
ch2_fod_dlymo de	ch2_fod_passth rough	ch2_fod_rst	ch2_ssc_count er_src		ch2_ssc_counter		ch2_ssc_type
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/W-0h		R/W-0h
7	6	5	4	3	2	1	0
ch2_ssc	ch2_ssc_spread ch2_ssc_fmod		ch2_ssc_en	RESERVED	RESERVED	ch2_glitchless_ en	
R/W-1h R/W-3h		V-3h	R/W-0h	R/W-0h	R/W-0h	R/W-1h	

Table 55. CH2_CTRL4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ch2_fod_dlymode	R/W	0h	Sets FOD in delay mode.
				0h = Synthesis
				1h = Delay
14	ch2_fod_passthrough	R/W	0h	Bypassed all Registers in the FOD.
				0h = Normal
				1h = Bypass
13	ch2_fod_rst	R/W	0h	Resets FOD.
				0h = Active
				1h = Reset
12	ch2_ssc_counter_src	R/W	0h	SSC counter clock source.
				0h = FOD_CLK
				1h = REF_CLK
11-9	ch2_ssc_counter	R/W	0h	Sets the division Value of SSC Clock.
8	ch2_ssc_type	R/W	0h	Sets SSC Type.
				0h = center
				1h = down
7-6	ch2_ssc_spread	R/W	1h	Sets the SSC Spread for SSC Modulation.All in percent of carrier frequency.
				0h = -0.5 down or +/- 0.25
				1h = -1.0 or +/- 0.5
				2h = -2.0 or +/- 1.0
				3h = -5.0 or +/-2.5
5-4	ch2_ssc_fmod	R/W	3h	Sets number of cycles for SSC Modulation.
				0h = 240
				1h = 400
				2h = 520
				3h = 556
3	ch2_ssc_en	R/W	0h	Enables SSC.
				0h = SSC Off
				1h = SSC On
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED

Table 55. CH2_CTRL4 Register Field Descriptions (continued)


Bit	Field	Туре	Reset	Description	
0	ch2_glitchless_en	R/W	1h	Enables Glitchless switching for Output Channel.	
				0h = Immediate	
				1h = Glitch-less	

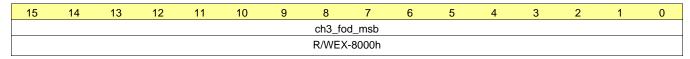
8.6.1.38 CH2_CTRL5 Register (Address = 2Eh) [reset = 8h]

CH2_CTRL5 is shown in Figure 71 and described in Table 56.

Return to Summary Table.

Figure 71. CH2_CTRL5 Register

Table 56. CH2_CTRL5 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-4	RESERVED	R/W	0h	Reserved.
3	ch2_1p8vdet	R/W	1h	Specify supply on the channel. Oh = 2.5 V or 3.3 V 1h = 1.8 V
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED
0	RESERVED	R/W	0h	RESERVED

8.6.1.39 CH3_CTRL0 Register (Address = 2Fh) [reset = 8000h]

CH3_CTRL0 is shown in Figure 72 and described in Table 57.

Return to Summary Table.

Figure 72. CH3_CTRL0 Register

Table 57. CH3_CTRL0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	ch3_fod_msb	R/WEX		MSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.40 CH3_CTRL1 Register (Address = 30h) [reset = 0h]

CH3_CTRL1 is shown in Figure 73 and described in Table 58.

Return to Summary Table.

Figure 73. CH3_CTRL1 Register

15	14	13	12	11	10	9	8			
	RESERVED									
R/W-0h										
7	6	5	4	3	2	1	0			
	ch3_fod									
R/WEX-0h										

Table 58. CH3_CTRL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R/W	0h	Reserved.
8-0	ch3_fod	R/WEX	0h	LSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.41 CH3_CTRL2 Register (Address = 31h) [reset = 0h]

CH3_CTRL2 is shown in Figure 74 and described in Table 59.

Return to Summary Table.

Figure 74. CH3_CTRL2 Register

15	14	13	12	11	10	9	8
ch3_io	d_mux			ch3_id	od_div		
R/W-0h				R/WE	X-0h		
7	6	5	4	3	2	1	0
	ch3_iod_div						
	R/WEX-0h						

Table 59. CH3_CTRL2 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-14	ch3_iod_mux	R/W	0h	Input Clock selection for IOD.
				0h = PSA
				1h = PSB
				2h = FOD
				3h = REF
13-0	ch3_iod_div	R/WEX	0h	IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV

8.6.1.42 CH3_CTRL3 Register (Address = 32h) [reset = 4h]

CH3_CTRL3 is shown in Figure 75 and described in Table 60.

Return to Summary Table.

Figure 75. CH3_CTRL3 Register

15	14	13	12	11	10	9	8
		ch3_sync_delay			ch3_sync_en	RESERVED	ch3_mute_sel
R/W-0h					R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
ch3_mute	ch3_ci	mos_pol	ch3_outbuf_ctrl			ch3_mux	
R/W-0h	R/W-0h		R/W-1h			R/V	V-0h

Table 60. CH3_CTRL3 Register Field Descriptions

Table 00. CH3_CTNL3 Register Field Descriptions						
BIT	FIELD	TYPE	RESET	DESCRIPTION		
15-11	ch3_sync_delay	R/W	0h	Sync Delay cycles of IOD Input Clock. One cycle is a period of the selected pre-scaler clock.		
10	ch3_sync_en	R/W	0h	Enables SYNC for the channel.		
				0h = Disabled		
				1h = Enabled		
9	RESERVED	R/W	0h	Reserved.		
8	ch3_mute_sel	R/W	0h	Mute selection for Output Channel.		
				0h = P=L N=H		
				1h = P=H N=L		
7	ch3_mute	R/W	Oh	To mute the output on this channel. When op_ovrd =1 - this bit will directly mute the output decoder else based on the 'mute' register bit value this signal will be driven high during the calibration. Refer State Machine Document		
6-5	ch3_cmos_pol	R/W	0h	programmability of output CMOS buffer polarity.		
				0h = P+ N+		
				1h = P+ N-		
				2h = P- N+		
				3h = P- N-		
4-2	ch3_outbuf_ctrl	R/W	1h	Select the output buffer format.		
				0h = disabled		
				1h = LVDS ⁽¹⁾		
				2h = HCSL		
				3h = CML		
				4h = LVPECL		
				5h = CMOSPN		
				6h = CMOSP		
				7h = CMOSN		
1-0	ch3_mux	R/W	0h	Output Clock Selection.		
				0h = CH2		
				1h = CH3		
				2h = CH4		

⁽¹⁾ For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 69 and Table 68 accordingly.

8.6.1.43 CH3_CTRL4 Register (Address = 33h) [reset = 671h]

CH3_CTRL4 is shown in Figure 76 and described in Table 61.

Return to Summary Table.

Figure 76. CH3_CTRL4 Register

15	14	13	12	11	10	9	8
ch3_fod_dlymo de	ch3_fod_passth rough	ch3_fod_rst	ch3_ssc_count er_src		ch3_ssc_counter		ch3_ssc_type
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/W-3h		R/W-0h
7	6	5	4	3	2	1	0
ch3_ssc_spread ch3_		ch3_ss	sc_fmod	ch3_ssc_en	RESERVED	RESERVED	ch3_glitchless_ en
R/W-1h R/W-3h		V-3h	R/W-0h	R/W-0h	R/W-0h	R/W-1h	

Table 61. CH3_CTRL4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ch3_fod_dlymode	R/W	0h	Sets FOD in delay mode.
				0h = Synthesis
				1h = Delay
14	ch3_fod_passthrough	R/W	0h	Bypassed all Registers in the FOD.
				0h = Normal
				1h = Bypass
13	ch3_fod_rst	R/W	0h	Resets FOD.
				0h = Active
				1h = Reset
12	ch3_ssc_counter_src	R/W	0h	SSC counter clock source.
				0h = FOD_CLK
				1h = REF_CLK
11-9	ch3_ssc_counter	R/W	3h	Sets the division Value of SSC Clock.
8	ch3_ssc_type	R/W	0h	Sets SSC Type.
				0h = center
				1h = down
7-6	ch3_ssc_spread	R/W	1h	Sets the SSC Spread for SSC Modulation.All in percent of carrier frequency.
				0h = -0.5 down or +/- 0.25
				1h = -1.0 or +/- 0.5
				2h = -2.0 or +/- 1.0
				3h = -5.0 or +/- 2.5
5-4	ch3_ssc_fmod	R/W	3h	Sets number of cycles for SSC Modulation.
				0h = 240
				1h = 400
				2h = 520
				3h = 556
3	ch3_ssc_en	R/W	0h	Enables SSC.
				0h = SSC Off
				1h = SSC On
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED

Table 61. CH3_CTRL4 Register Field Descriptions (continued)

Bit	Field	Туре	Reset Description	
0	ch3_glitchless_en	R/W	1h	Enables Glitchless switching for Output Channel.
				0h = Immediate
				1h = Glitch-less

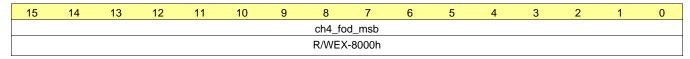
8.6.1.44 CH3_CTRL5 Register (Address = 34h) [reset = 8h]

CH3_CTRL5 is shown in Figure 77 and described in Table 62.

Return to Summary Table.

Figure 77. CH3_CTRL5 Register

Table 62. CH3_CTRL5 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-4	RESERVED	R/W	0h	Reserved.
3	ch3_1p8vdet	R/W	1h	Specify supply on the channel. Oh = 2.5 V or 3.3 V 1h = 1.8 V
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED
0	RESERVED	R/W	0h	RESERVED

8.6.1.45 CH4_CTRL0 Register (Address = 35h) [reset = 8000h]

CH4_CTRL0 is shown in Figure 78 and described in Table 63.

Return to Summary Table.

Figure 78. CH4_CTRL0 Register

Table 63. CH4_CTRL0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	ch4_fod_msb	R/WEX	8000h	MSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.46 CH4_CTRL1 Register (Address = 36h) [reset = 0h]

CH4_CTRL1 is shown in and described in .

Return to Summary Table.

Figure 79. CH4_CTRL1 Register

15	14	13	12	11	10	9	8					
RESERVED												
R/W-0h												
7	6	5 4 3 2 1										
	ch4_fod											
	R/WEX-0h											

Table 64. CH4_CTRL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-9	RESERVED	R/W	0h	Reserved.
8-0	ch4_fod	R/WEX	0h	LSB Part of the FOD Fraction. Also, used in FOD_DELAY_MODE. Use FOD_Calculator for FOD Frequency

8.6.1.47 CH4_CTRL2 Register (Address = 37h) [reset = 0h]

CH4_CTRL2 is shown in Figure 80 and described in Table 65.

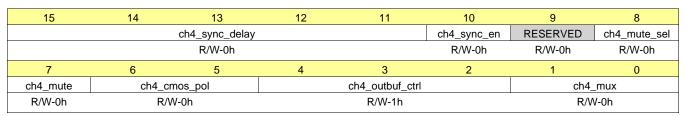
Return to Summary Table.

Figure 80. CH4_CTRL2 Register

15	14	13	12	11	10	9	8		
ch4_io	d_mux			ch4_id	od_div				
R/W	/-0h			R/WE	EX-0h				
7	6	5	4	3	2	1	0		
	ch4_iod_div								
	R/WEX-0h								

Table 65. CH4_CTRL2 Register Field Descriptions

Bit	Field	Туре	Reset	Description		
15-14	ch4_iod_mux	R/W	0h	Input Clock selection for IOD.		
				0h = PSA		
				1h = PSB		
				2h = FOD		
				3h = REF		
13-0	ch4_iod_div	R/WEX	0h	IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV		



8.6.1.48 CH4_CTRL3 Register (Address = 38h) [reset = 4h]

CH4_CTRL3 is shown in Figure 81 and described in Table 66.

Return to Summary Table.

Figure 81. CH4_CTRL3 Register

Table 66. CH4_CTRL3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
			-	
15-11	ch4_sync_delay	R/W	0h	Sync Delay cycles of IOD Input Clock. One cycle is a period of the selected pre-scaler clock.
10	ch4_sync_en	R/W	0h	Enables SYNC for the channel.
				0h = Disabled
				1h = Enabled
9	RESERVED	R/W	0h	Reserved.
8	ch4_mute_sel	R/W	0h	Mute selection for Output Channel.
				0h = P=L N=H
				1h = P=H N=L
7	ch4_mute	R/W	Oh	To mute the output on this channel. When op_ovrd =1 - this bit will directly mute the output decoder else based on the 'mute' register bit value this signal will be driven high during the calibration. Refer State Machine Document
4-2	ch4_outbuf_ctrl	R/W	1h	Select the output buffer format.
				0h = disabled
				1h = LVDS ⁽¹⁾
				2h = HCSL
				3h = CML
				4h = LVPECL
1-0	ch4_mux	R/W	0h	Output Clock Selection. 0h = Previous Channel, 1h = Current Channel, 2h = Next Channel, 3h = AGND
				0h = CH3
				1h = CH4
L				I.

⁽¹⁾ For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 69 and Table 68 accordingly.

8.6.1.49 CH4_CTRL4 Register (Address = 39h) [reset = 71h]

CH4_CTRL4 is shown in Figure 82 and described in Table 67.

Return to Summary Table.

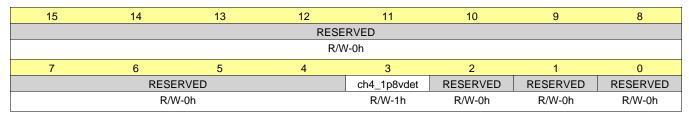
Figure 82. CH4_CTRL4 Register

15	14	13	12	11	10	9	8
ch4_fod_dlymo de	ch4_fod_passth rough	ch4_fod_rst	ch4_ssc_count er_src		ch4_ssc_counter		ch4_ssc_type
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/W-0h		R/W-0h
7	6	5	4	3	2	1	0
ch4_ssc_spread		ch4_ssc_fmod		ch4_ssc_en	RESERVED	RESERVED	ch4_glitchless_ en
R/W-1h		R/V	V-3h	R/W-0h	R/W-0h	R/W-0h	R/W-1h

Table 67. CH4_CTRL4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ch4_fod_dlymode	R/W	0h	Sets FOD in delay mode.
				0h = Synthesis
				1h = Delay
14	ch4_fod_passthrough	R/W	0h	Bypassed all Registers in the FOD.
				0h = Normal
				1h = Bypass
13	ch4_fod_rst	R/W	0h	Resets FOD.
				0h = Active
				1h = Reset
12	ch4_ssc_counter_src	R/W	0h	SSC counter clock source.
				0h = FOD_CLK
				1h = REF_CLK
11-9	ch4_ssc_counter	R/W	0h	Sets the division Value of SSC Clock.
8	ch4_ssc_type	R/W	0h	Sets SSC Type.
				0h = center
				1h = down
7-6	ch4_ssc_spread	R/W	1h	Sets the SSC Spread for SSC Modulation.All in percent of carrier frequency.
				0h = -0.5 down or +/- 0.25
				1h = -1.0 or +/- 0.5
				2h = -2.0 or +/- 1.0
				3h = -5.0 or +/- 2.5
5-4	ch4_ssc_fmod	R/W	3h	Sets number of cycles for SSC Modulation.
				0h = 240
				1h = 400
				2h = 520
				3h = 556
3	ch4_ssc_en	R/W	0h	Enables SSC.
				0h = SSC Off
				1h = SSC On
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED

Table 67. CH4_CTRL4 Register Field Descriptions (continued)


Bit	Field	Туре	Reset	Description	
0	ch4_glitchless_en	R/W	1h	Enables Glitchless switching for Output Channel.	
				0h = Immediate	
				1h = Glitch-less	

8.6.1.50 CH4_CTRL5 Register (Address = 3Ah) [reset = 8h]

CH4_CTRL5 is shown in Figure 83 and described in Table 68.

Return to Summary Table.

Figure 83. CH4_CTRL5 Register

Table 68. CH4_CTRL5 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-4	RESERVED	R/W	0h	Reserved.
3	ch4_1p8vdet	R/W	1h	Specify supply on the channel. 0h = 2.5 V or 3.3 V 1h = 1.8 V
2	RESERVED	R/W	0h	RESERVED
1	RESERVED	R/W	0h	RESERVED
0	RESERVED	R/W	0h	RESERVED

8.6.1.51 CHX_CTRL0 Register (Address = 3Bh) [reset = 61h]

CHX_CTRL0 is shown in Figure 84 and described in Table 69.

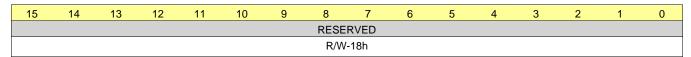
Return to Summary Table.

Figure 84. CHX_CTRL0 Register

15	14	13	12	11	10	9	8
RESERVED	RESERVED	chx_rst	chx_lvds_cmtrim_inc		chx_lvds_c	mtrim_dec	chx_diffbuf_ibia s_trim
R/W-0h	R/W-0h	R/W-0h	R/W	R/W-0h		R/W-0h	
7	6	5	4	3	2	1	0
chx_diffbuf_ibias_trim		chx_lvcmos_dr v	RESERVED	ch0_lvcr	nos_drv	RESERVED	
R/W-3h			R/W-1h	R/W-0h	R/W	'-0h	R/W-1h

Table 69. CHX_CTRL0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15	RESERVED	R/W	0h	RESERVED
14	RESERVED	R/W	0h	RESERVED
13	chx_rst	R/W	0h	All Channel RST during Power Up and Later. 1h = RST, 0h = Normal.
12-11	chx_lvds_cmtrim_inc	R/W	0h	Diff output buffer output common mode programmability. Decrement Only use either increment or decrement.
10-9	chx_lvds_cmtrim_dec	R/W	0h	Diff output buffer output common mode programmability. Increment Only use either increment or decrement.
8-5	chx_diffbuf_ibias_trim	R/W	3h	Differential output buffer tail current programmability. Ch = 350uA 8h = 400uA 4h = 450uA 0h = 500uA 1h = 550uA 2h = 600uA 3h = 650uA
4	chx_lvcmos_drv	R/W	1h	Adjust CH1 to CH4 LVCMOS driver strength. 0h = Normal 1h = Fast
3	RESERVED	R/W	1h	RESERVED
2-1	ch0_lvcmos_drv	R/W	Oh	Enable Y0 channel and adjust LVCMOS driver strength. 0h = Off 1h = Normal 3h = Fast
0	0 RESERVED		1h	RESERVED



8.6.1.52 CHX_CTRL1 Register (Address = 3Ch) [reset = 18h]

CHX_CTRL1 is shown in Figure 85 and described in Table 70.

Return to Summary Table.

Figure 85. CHX_CTRL1 Register

Table 70. CHX_CTRL1 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	RESERVED	R/W	18h	RESERVED

8.6.1.53 CHX_CTRL2 Register (Address = 3Dh) [reset = 1500h]

CHX_CTRL2 is shown in Figure 86 and described in Table 71.

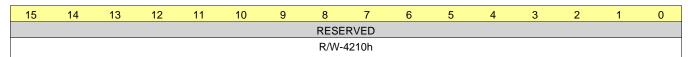
Return to Summary Table.

Figure 86. CHX_CTRL2 Register

15	14	13	12	11	10	9	8
RESE	RVED	RESERVED			RESERVED		
R/V	V-0h	R/W-0h			R/W-15h		
7	6	5	4	3	2	1	0
fod_clk_ch4	fod_clk_ch3	fod_clk_ch2	fod_clk_ch1		RESEF	RVED	
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/W-	-0h	

Table 71. CHX_CTRL2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R/W	0h	RESERVED
13	RESERVED	R/W	0h	RESERVED
12-8	RESERVED	R/W	15h	RESERVED
7	fod_clk_ch4	R/W	0h	FOD4 clock select.
				0h = IOD4
				1h = direct
6	fod_clk_ch3	R/W	0h	FOD3 clock select.
				0h = IOD3
				1h = direct
5	fod_clk_ch2	R/W	0h	FOD2 clock select.
				0h = IOD2
				1h = direct
4	fod_clk_ch1	R/W	0h	FOD1 clock select.
				0h = IOD1
				1h = direct
3-0	RESERVED	R/W	0h	RESERVED



8.6.1.54 CHX_CTRL3 Register (Address = 3Eh) [reset = 4210h]

CHX_CTRL3 is shown in and described in Table 72.

Return to Summary Table.

Figure 87. CHX_CTRL3 Register

Table 72. CHX_CTRL3 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	RESERVED	R/W	4210h	RESERVED

8.6.1.55 CHX_CTRL4 Register (Address = 3Fh) [reset = 210h]

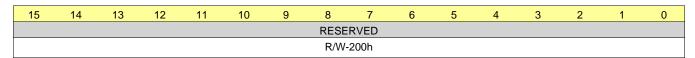
CHX_CTRL4 is shown in Figure 88 and described in Table 73.

Return to Summary Table.

Figure 88. CHX_CTRL4 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESE	RVED							
							R/W-	210h							

Table 73. CHX_CTRL4 Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	RESERVED	R/W	210h	RESERVED

8.6.1.56 DBG0 Register (Address = 42h) [reset = 200h]

DBG0 is shown in and described in Table 74.

Return to Summary Table.

Figure 89. DBG0 Register

Table 74. DBG0 Register Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
15-0	RESERVED	R/W	200h	RESERVED

www.ti.com

8.6.2 EEPROM Map

The EEPROM is split into a common base page which holds common settings. Then there are two pages for customized settings. Page 0 is selected using EEPROMSEL = Low. Page 1 is selected using EEPROMSEL = High.

The CRC value is stored at the end of page 1 in word 0x3F.

Table 75. EEPROM, Base

WORD NO.	SECTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0h	Base	cp_dly[0]	cal_mute	shift_left[1]	shift_left[0]	gpio3_gf_ en	gpio2_gf_ en	acal_en	pdn_pll_v cobuf2	pdn_pll_v co	pdn_pll_v cobuf	pdn_pll_c p	pdn_pll_lo ckdet	pdn_pll_p fd	pdn_pll_p sfb	regcommi t_page	resetn_so ft
1h	Base	ac_cmp_ dly[0]	pll_lock_d ly[4]	pll_lock_d ly[3]	pll_lock_d ly[2]	pll_lock_d ly[1]	pll_lock_d ly[0]	ac_init_dl y[5]	ac_init_dl y[4]	ac_init_dl y[3]	ac_init_dl y[2]	ac_init_dl y[1]	ac_init_dl y[0]	cp_dly[4]	cp_dly[3]	cp_dly[2]	cp_dly[1]
2h	Base	0	0	0	0	0	0	err_cnt[2]	err_cnt[1]	err_cnt[0]	fc_setl_dl y[1]	fc_setl_dl y[0]	ac_cmp_ dly[5]	ac_cmp_ dly[4]	ac_cmp_ dly[3]	ac_cmp_ dly[2]	ac_cmp_ dly[1]
3h	Base	pll_pfd_dl y_ctrl[1]	pll_pfd_dl y_ctrl[0]	pll_lockde t_window[2]	pll_lockde t_window[1]		pll_lockde t_wait[1]	pll_lockde t_wait[0]	0	0	0	0	0	0	0	0	0
4h	Base	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
5h	Base	chx_diffbu f_ibias_tri m[1]	chx_diffbu f_ibias_tri m[0]	chx_lvcm os_drv	chx_en_c mosslow	0	0	ch3_ssc_ counter[3]	ch3_ssc_ counter[2]	ch3_ssc_ counter[1]	ch3_ssc_ counter[0]	0	0	ch1_ssc_ counter[3]	ch1_ssc_ counter[2]	ch1_ssc_ counter[1]	ch1_ssc_ counter[0]
6h	Base	0	0	0	0	1	1	0	0	0	0	chx_lvds_ cmtrim_in c[1]	chx_lvds_ cmtrim_in c[0]	chx_lvds_ cmtrim_d ec[1]	chx_lvds_ cmtrim_d ec[0]	chx_diffbu f_ibias_tri m[3]	chx_diffbu f_ibias_tri m[2]
7h	Base	0	1	0	1	fod_clk_c h4	fod_clk_c h3	fod_clk_c h2	fod_clk_c h1	0	0	0	0	0	0	0	0
8h	Base	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	1
9h	Base	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
Ah	Base	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Bh	Base	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TEXAS INSTRUMENTS

Table 76. EEPROM, Page 0

WORD										_							
NO.	SECTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ch	Page 0	gpio4_inp ut_sel[3]	gpio4_inp ut_sel[2]	gpio4_inp ut_sel[1]	gpio4_inp ut_sel[0]	gpio1_inp ut_sel[3]	gpio1_inp ut_sel[2]	gpio1_inp ut_sel[1]	gpio1_inp ut_sel[0]	i2c_a0	gpio0_inp ut_sel	gpio4_dir _sel	gpio1_dir _sel	gpio0_dir _sel	zdm_cloc ksel	zdm_mod e	mode
Dh	Page 0	gpio4_out put_sel[3]	gpio4_out put_sel[2]	gpio4_out put_sel[1]	gpio4_out put_sel[0]	gpio1_out put_sel[3]	gpio1_out put_sel[2]	gpio1_out put_sel[1]	gpio1_out put_sel[0]	fod_size[5	fod_size[4]	fod_size[3]	fod_size[2]	fod_size[1]	fod_size[0]	ref_mux_ src	ref_mux
Eh	Page 0	pdn_pll_s scclk	pdn_ch4	pdn_ch4_ ssc	pdn_ch3	pdn_ch3_ ssc	pdn_ch2	pdn_ch2_ ssc	pdn_ch1	pdn_ch1_ ssc	iod_size	rsrvd_1[1]	rsrvd_1[0]	gpio0_out put_sel[3]	gpio0_out put_sel[2]	gpio0_out put_sel[1]	gpio0_out put_sel[0]
Fh	Page 0	ip_xo_clo ad[2]	ip_xo_clo ad[1]	ip_xo_clo ad[0]	ip_xo_gm _fine[1]	ip_xo_gm _fine[0]	ip_xo_gm [3]	ip_xo_gm [2]	ip_xo_gm [1]	ip_xo_gm [0]	xin_inbuf_ ctrl[1]	xin_inbuf_ ctrl[0]	zdm_auto	bypass_c al	bypass_c onfig	pdn_pll_p sb	pdn_pll_p sa
10h	Page 0	ip_byp_e n_ch3	ip_byp_e n_ch2	ip_byp_e n_ch1	ip_byp_e n_y0	ip_byp_m ux	ip_rdiv[7]	ip_rdiv[6]	ip_rdiv[5]	ip_rdiv[4]	ip_rdiv[3]	ip_rdiv[2]	ip_rdiv[1]	ip_rdiv[0]	ref_inbuf_ ctrl	ip_xo_clo ad[4]	ip_xo_clo ad[3]
11h	Page 0	pll_ndiv[1 3]	pll_ndiv[1 2]	pll_ndiv[1 1]	pll_ndiv[1 0]	pll_ndiv[9]	pll_ndiv[8]	pll_ndiv[7]	pll_ndiv[6]	pll_ndiv[5]	pll_ndiv[4]	pll_ndiv[3]	pll_ndiv[2]	pll_ndiv[1]	pll_ndiv[0]	ip_ldo_loa d_en	ip_byp_e n_ch4
12h	Page 0	pll_cp_up[3]	pll_cp_up[2]	pll_cp_up[1]	pll_cp_up[0]	pll_cp_dn[5]	pll_cp_dn[4]	pll_cp_dn[3]	pll_cp_dn[2]	pll_cp_dn[1]	pll_cp_dn[0]	pll_psb[1]	pll_psb[0]	pll_psa[1]	pll_psa[0]	pll_psfb[1]	pll_psfb[0]
13h	Page 0	pll_lf_zca p[4]	pll_lf_zca p[3]	pll_lf_zca p[2]	pll_lf_zca p[1]	pll_lf_zca p[0]	pll_lf_res[3]	pll_lf_res[2]	pll_lf_res[1]	pll_lf_res[0]	pll_lf_pca p[4]	pll_lf_pca p[3]	pll_lf_pca p[2]	pll_lf_pca p[1]	pll_lf_pca p[0]	pll_cp_up[5]	pll_cp_up[4]
14h	Page 0	ch1_fod_ msb[15]	ch1_fod_ msb[14]	ch1_fod_ msb[13]	ch1_fod_ msb[12]	ch1_fod_ msb[11]	ch1_fod_ msb[10]	ch1_fod_ msb[9]	ch1_fod_ msb[8]	ch1_fod_ msb[7]	ch1_fod_ msb[6]	ch1_fod_ msb[5]	ch1_fod_ msb[4]	ch1_fod_ msb[3]	ch1_fod_ msb[2]	ch1_fod_ msb[1]	ch1_fod_ msb[0]
15h	Page 0	ch1_iod_ div[6]	ch1_iod_ div[5]	ch1_iod_ div[4]	ch1_iod_ div[3]	ch1_iod_ div[2]	ch1_iod_ div[1]	ch1_iod_ div[0]	ch1_fod[8	ch1_fod[7	ch1_fod[6	ch1_fod[5	ch1_fod[4]	ch1_fod[3	ch1_fod[2]	ch1_fod[1]	ch1_fod[0]
16h	Page 0	0	0	ch1_outb uf_ctrl[2]	ch1_outb uf_ctrl[1]	ch1_outb uf_ctrl[0]	ch1_mux[1]	ch1_mux[0]	ch1_iod_ mux[1]	ch1_iod_ mux[0]	ch1_iod_ div[13]	ch1_iod_ div[12]	ch1_iod_ div[11]	ch1_iod_ div[10]	ch1_iod_ div[9]	ch1_iod_ div[8]	ch1_iod_ div[7]
17h	Page 0	ch1_ssc_t ype	ch1_ssc_ spread[1]	ch1_ssc_ spread[0]	ch1_ssc_f mod[1]	ch1_ssc_f mod[0]	ch1_ssc_ en	0	ch1_glitch less_en	ch1_sync _delay[4]	ch1_sync _delay[3]	ch1_sync _delay[2]	ch1_sync _delay[1]	ch1_sync _delay[0]	ch1_sync _en	ch1_mute _sel	ch1_mute
18h	Page 0	ch2_fod_ msb[13]	ch2_fod_ msb[12]	ch2_fod_ msb[11]	ch2_fod_ msb[10]	ch2_fod_ msb[9]	ch2_fod_ msb[8]	ch2_fod_ msb[7]	ch2_fod_ msb[6]	ch2_fod_ msb[5]	ch2_fod_ msb[4]	ch2_fod_ msb[3]	ch2_fod_ msb[2]	ch2_fod_ msb[1]	ch2_fod_ msb[0]	ch1_1p8v det	ch1_fod_ dlymode
19h	Page 0	ch2_iod_ div[4]	ch2_iod_ div[3]	ch2_iod_ div[2]	ch2_iod_ div[1]	ch2_iod_ div[0]	ch2_fod[8]	ch2_fod[7	ch2_fod[6	ch2_fod[5	ch2_fod[4]	ch2_fod[3]	ch2_fod[2]	ch2_fod[1	ch2_fod[0]	ch2_fod_ msb[15]	ch2_fod_ msb[14]
1Ah	Page 0	ch2_outb uf_ctrl[2]	ch2_outb uf_ctrl[1]	ch2_outb uf_ctrl[0]	ch2_mux[1]	ch2_mux[0]	ch2_iod_ mux[1]	ch2_iod_ mux[0]	ch2_iod_ div[13]	ch2_iod_ div[12]	ch2_iod_ div[11]	ch2_iod_ div[10]	ch2_iod_ div[9]	ch2_iod_ div[8]	ch2_iod_ div[7]	ch2_iod_ div[6]	ch2_iod_ div[5]
1Bh	Page 0	ch2_ssc_ spread[0]	ch2_ssc_f mod[1]	ch2_ssc_f mod[0]	ch2_ssc_ en	0	ch2_glitch less_en	ch2_sync _delay[4]	ch2_sync _delay[3]	ch2_sync _delay[2]	ch2_sync _delay[1]	ch2_sync _delay[0]	ch2_sync _en	ch2_mute _sel	ch2_mute	ch2_cmos _pol[1]	ch2_cmos _pol[0]
1Ch	Page 0	ch3_fod_ msb[11]	ch3_fod_ msb[10]	ch3_fod_ msb[9]	ch3_fod_ msb[8]	ch3_fod_ msb[7]	ch3_fod_ msb[6]	ch3_fod_ msb[5]	ch3_fod_ msb[4]	ch3_fod_ msb[3]	ch3_fod_ msb[2]	ch3_fod_ msb[1]	ch3_fod_ msb[0]	ch2_1p8v det	ch2_fod_ dlymode	ch2_ssc_t ype	ch2_ssc_ spread[1]
1Dh	Page 0	ch3_iod_ div[2]	ch3_iod_ div[1]	ch3_iod_ div[0]	ch3_fod[8	ch3_fod[7	ch3_fod[6	ch3_fod[5	ch3_fod[4]	ch3_fod[3	ch3_fod[2]	ch3_fod[1	ch3_fod[0]	ch3_fod_ msb[15]	ch3_fod_ msb[14]	ch3_fod_ msb[13]	ch3_fod_ msb[12]
1Eh	Page 0	ch3_outb uf_ctrl[0]	ch3_mux[1]	ch3_mux[0]	ch3_iod_ mux[1]	ch3_iod_ mux[0]	ch3_iod_ div[13]	ch3_iod_ div[12]	ch3_iod_ div[11]	ch3_iod_ div[10]	ch3_iod_ div[9]	ch3_iod_ div[8]	ch3_iod_ div[7]	ch3_iod_ div[6]	ch3_iod_ div[5]	ch3_iod_ div[4]	ch3_iod_ div[3]
1Fh	Page 0	ch3_ssc_f mod[0]	ch3_ssc_ en	0	ch3_glitch less_en	ch3_sync _delay[4]	ch3_sync _delay[3]	ch3_sync _delay[2]	ch3_sync _delay[1]	ch3_sync _delay[0]	ch3_sync _en	ch3_mute _sel	ch3_mute	ch3_cmos _pol[1]	ch3_cmos _pol[0]	ch3_outb uf_ctrl[2]	ch3_outb uf_ctrl[1]
20h	Page 0	ch4_fod_ msb[9]	ch4_fod_ msb[8]	ch4_fod_ msb[7]	ch4_fod_ msb[6]	ch4_fod_ msb[5]	ch4_fod_ msb[4]	ch4_fod_ msb[3]	ch4_fod_ msb[2]	ch4_fod_ msb[1]	ch4_fod_ msb[0]	ch3_1p8v det	ch3_fod_ dlymode	ch3_ssc_t ype	ch3_ssc_ spread[1]	ch3_ssc_ spread[0]	ch3_ssc_f mod[1]

Submit Documentation Feedback

www.ti.com

Table 76. EEPROM, Page 0 (continued)

WORD NO.	SECTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
21h	Page 0	ch4_iod_ div[0]	ch4_fod[8	ch4_fod[7]	ch4_fod[6	ch4_fod[5	ch4_fod[4]	ch4_fod[3	ch4_fod[2]	ch4_fod[1	ch4_fod[0]	ch4_fod_ msb[15]	ch4_fod_ msb[14]	ch4_fod_ msb[13]	ch4_fod_ msb[12]	ch4_fod_ msb[11]	ch4_fod_ msb[10]
22h	Page 0	ch4_mux[0]	ch4_iod_ mux[1]	ch4_iod_ mux[0]	ch4_iod_ div[13]	ch4_iod_ div[12]	ch4_iod_ div[11]	ch4_iod_ div[10]	ch4_iod_ div[9]	ch4_iod_ div[8]	ch4_iod_ div[7]	ch4_iod_ div[6]	ch4_iod_ div[5]	ch4_iod_ div[4]	ch4_iod_ div[3]	ch4_iod_ div[2]	ch4_iod_ div[1]
23h	Page 0	0	ch4_glitch less_en	ch4_sync _delay[4]	ch4_sync _delay[3]	ch4_sync _delay[2]	ch4_sync _delay[1]	ch4_sync _delay[0]	ch4_sync _en	ch4_mute _sel	ch4_mute	0	0	ch4_outb uf_ctrl[2]	ch4_outb uf_ctrl[1]	ch4_outb uf_ctrl[0]	ch4_mux[1]
24h	Page 0	0	0	1	1	pll_en_cp	ch0_lvcm os_drv[1]	ch0_lvcm os_drv[0]	1	ch4_1p8v det	ch4_fod_ dlymode	ch4_ssc_t ype	ch4_ssc_ spread[1]	ch4_ssc_ spread[0]	ch4_ssc_f mod[1]	ch4_ssc_f mod[0]	ch4_ssc_ en
25h	Page 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 77. EEPROM, Page 1

WORE																	
WORD NO.	SECTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
26h	Page 1	gpio4_inp ut_sel[3]	gpio4_inp ut_sel[2]	gpio4_inp ut_sel[1]	gpio4_inp ut_sel[0]	gpio1_inp ut_sel[3]	gpio1_inp ut_sel[2]	gpio1_inp ut_sel[1]	gpio1_inp ut_sel[0]	i2c_a0	gpio0_inp ut_sel	gpio4_dir _sel	gpio1_dir _sel	gpio0_dir _sel	zdm_cloc ksel	zdm_mod e	mode
27h	Page 1	gpio4_out put_sel[3]	gpio4_out put_sel[2]	gpio4_out put_sel[1]	gpio4_out put_sel[0]	gpio1_out put_sel[3]	gpio1_out put_sel[2]	gpio1_out put_sel[1]	gpio1_out put_sel[0]	fod_size[5]	fod_size[4]	fod_size[3	fod_size[2]	fod_size[1]	fod_size[0]	ref_mux_ src	ref_mux
28h	Page 1	pdn_pll_s scclk	pdn_ch4	pdn_ch4_ ssc	pdn_ch3	pdn_ch3_ ssc	pdn_ch2	pdn_ch2_ ssc	pdn_ch1	pdn_ch1_ ssc	iod_size	rsrvd_1[1]	rsrvd_1[0]	gpio0_out put_sel[3]	gpio0_out put_sel[2]	gpio0_out put_sel[1]	gpio0_out put_sel[0]
29h	Page 1	ip_xo_clo ad[2]	ip_xo_clo ad[1]	ip_xo_clo ad[0]	ip_xo_gm _fine[1]	ip_xo_gm _fine[0]	ip_xo_gm [3]	ip_xo_gm [2]	ip_xo_gm [1]	ip_xo_gm [0]	xin_inbuf_ ctrl[1]	xin_inbuf_ ctrl[0]	zdm_auto	bypass_c al	bypass_c onfig	pdn_pll_p sb	pdn_pll_p sa
2Ah	Page 1	ip_byp_e n_ch3	ip_byp_e n_ch2	ip_byp_e n_ch1	ip_byp_e n_y0	ip_byp_m ux	ip_rdiv[7]	ip_rdiv[6]	ip_rdiv[5]	ip_rdiv[4]	ip_rdiv[3]	ip_rdiv[2]	ip_rdiv[1]	ip_rdiv[0]	ref_inbuf_ ctrl	ip_xo_clo ad[4]	ip_xo_clo ad[3]
2Bh	Page 1	pll_ndiv[1 3]	pll_ndiv[1 2]	pll_ndiv[1 1]	pll_ndiv[1 0]	pll_ndiv[9]	pll_ndiv[8]	pll_ndiv[7]	pll_ndiv[6]	pll_ndiv[5]	pll_ndiv[4]	pll_ndiv[3]	pll_ndiv[2]	pll_ndiv[1]	pll_ndiv[0]	ip_ldo_loa d_en	ip_byp_e n_ch4
2Ch	Page 1	pll_cp_up[3]	pll_cp_up[2]	pll_cp_up[1]	pll_cp_up[0]	pll_cp_dn[5]	pll_cp_dn[4]	pll_cp_dn[3]	pll_cp_dn[2]	pll_cp_dn[1]	pll_cp_dn[0]	pll_psb[1]	pll_psb[0]	pll_psa[1]	pll_psa[0]	pll_psfb[1]	pll_psfb[0]
2Dh	Page 1	pll_lf_zca p[4]	pll_lf_zca p[3]	pll_lf_zca p[2]	pll_lf_zca p[1]	pll_lf_zca p[0]	pll_lf_res[3]	pll_lf_res[2]	pll_lf_res[1]	pll_lf_res[0]	pll_lf_pca p[4]	pll_lf_pca p[3]	pll_lf_pca p[2]	pll_lf_pca p[1]	pll_lf_pca p[0]	pll_cp_up[5]	pll_cp_up[4]
2Eh	Page 1	ch1_fod_ msb[15]	ch1_fod_ msb[14]	ch1_fod_ msb[13]	ch1_fod_ msb[12]	ch1_fod_ msb[11]	ch1_fod_ msb[10]	ch1_fod_ msb[9]	ch1_fod_ msb[8]	ch1_fod_ msb[7]	ch1_fod_ msb[6]	ch1_fod_ msb[5]	ch1_fod_ msb[4]	ch1_fod_ msb[3]	ch1_fod_ msb[2]	ch1_fod_ msb[1]	ch1_fod_ msb[0]
2Fh	Page 1	ch1_iod_ div[6]	ch1_iod_ div[5]	ch1_iod_ div[4]	ch1_iod_ div[3]	ch1_iod_ div[2]	ch1_iod_ div[1]	ch1_iod_ div[0]	ch1_fod[8]	ch1_fod[7]	ch1_fod[6	ch1_fod[5	ch1_fod[4]	ch1_fod[3	ch1_fod[2]	ch1_fod[1]	ch1_fod[0]
30h	Page 1	0	0	ch1_outb uf_ctrl[2]	ch1_outb uf_ctrl[1]	ch1_outb uf_ctrl[0]	ch1_mux[1]	ch1_mux[0]	ch1_iod_ mux[1]	ch1_iod_ mux[0]	ch1_iod_ div[13]	ch1_iod_ div[12]	ch1_iod_ div[11]	ch1_iod_ div[10]	ch1_iod_ div[9]	ch1_iod_ div[8]	ch1_iod_ div[7]
31h	Page 1	ch1_ssc_t ype	ch1_ssc_ spread[1]	ch1_ssc_ spread[0]	ch1_ssc_f mod[1]	ch1_ssc_f mod[0]	ch1_ssc_ en	0	ch1_glitch less_en	ch1_sync _delay[4]	ch1_sync _delay[3]	ch1_sync _delay[2]	ch1_sync _delay[1]	ch1_sync _delay[0]	ch1_sync _en	ch1_mute _sel	ch1_mute
32h	Page 1	ch2_fod_ msb[13]	ch2_fod_ msb[12]	ch2_fod_ msb[11]	ch2_fod_ msb[10]	ch2_fod_ msb[9]	ch2_fod_ msb[8]	ch2_fod_ msb[7]	ch2_fod_ msb[6]	ch2_fod_ msb[5]	ch2_fod_ msb[4]	ch2_fod_ msb[3]	ch2_fod_ msb[2]	ch2_fod_ msb[1]	ch2_fod_ msb[0]	ch1_1p8v det	ch1_fod_ dlymode
33h	Page 1	ch2_iod_ div[4]	ch2_iod_ div[3]	ch2_iod_ div[2]	ch2_iod_ div[1]	ch2_iod_ div[0]	ch2_fod[8	ch2_fod[7	ch2_fod[6]	ch2_fod[5	ch2_fod[4]	ch2_fod[3	ch2_fod[2]	ch2_fod[1	ch2_fod[0]	ch2_fod_ msb[15]	ch2_fod_ msb[14]
34h	Page 1	ch2_outb uf_ctrl[2]	ch2_outb uf_ctrl[1]	ch2_outb uf_ctrl[0]	ch2_mux[1]	ch2_mux[0]	ch2_iod_ mux[1]	ch2_iod_ mux[0]	ch2_iod_ div[13]	ch2_iod_ div[12]	ch2_iod_ div[11]	ch2_iod_ div[10]	ch2_iod_ div[9]	ch2_iod_ div[8]	ch2_iod_ div[7]	ch2_iod_ div[6]	ch2_iod_ div[5]
35h	Page 1	ch2_ssc_ spread[0]	ch2_ssc_f mod[1]	ch2_ssc_f mod[0]	ch2_ssc_ en	0	ch2_glitch less_en	ch2_sync _delay[4]	ch2_sync _delay[3]	ch2_sync _delay[2]	ch2_sync _delay[1]	ch2_sync _delay[0]	ch2_sync _en	ch2_mute _sel	ch2_mute	ch2_cmos _pol[1]	ch2_cmos _pol[0]
36h	Page 1	ch3_fod_ msb[11]	ch3_fod_ msb[10]	ch3_fod_ msb[9]	ch3_fod_ msb[8]	ch3_fod_ msb[7]	ch3_fod_ msb[6]	ch3_fod_ msb[5]	ch3_fod_ msb[4]	ch3_fod_ msb[3]	ch3_fod_ msb[2]	ch3_fod_ msb[1]	ch3_fod_ msb[0]	ch2_1p8v det	ch2_fod_ dlymode	ch2_ssc_t ype	ch2_ssc_ spread[1]
37h	Page 1	ch3_iod_ div[2]	ch3_iod_ div[1]	ch3_iod_ div[0]	ch3_fod[8	ch3_fod[7	ch3_fod[6	ch3_fod[5	ch3_fod[4]	ch3_fod[3	ch3_fod[2]	ch3_fod[1	ch3_fod[0]	ch3_fod_ msb[15]	ch3_fod_ msb[14]	ch3_fod_ msb[13]	ch3_fod_ msb[12]
38h	Page 1	ch3_outb uf_ctrl[0]	ch3_mux[1]	ch3_mux[0]	ch3_iod_ mux[1]	ch3_iod_ mux[0]	ch3_iod_ div[13]	ch3_iod_ div[12]	ch3_iod_ div[11]	ch3_iod_ div[10]	ch3_iod_ div[9]	ch3_iod_ div[8]	ch3_iod_ div[7]	ch3_iod_ div[6]	ch3_iod_ div[5]	ch3_iod_ div[4]	ch3_iod_ div[3]
39h	Page 1	ch3_ssc_f mod[0]	ch3_ssc_ en	0	ch3_glitch less_en	ch3_sync _delay[4]	ch3_sync _delay[3]	ch3_sync _delay[2]	ch3_sync _delay[1]	ch3_sync _delay[0]	ch3_sync _en	ch3_mute _sel	ch3_mute	ch3_cmos _pol[1]	ch3_cmos _pol[0]	ch3_outb uf_ctrl[2]	ch3_outb uf_ctrl[1]
3Ah	Page 1	ch4_fod_ msb[9]	ch4_fod_ msb[8]	ch4_fod_ msb[7]	ch4_fod_ msb[6]	ch4_fod_ msb[5]	ch4_fod_ msb[4]	ch4_fod_ msb[3]	ch4_fod_ msb[2]	ch4_fod_ msb[1]	ch4_fod_ msb[0]	ch3_1p8v det	ch3_fod_ dlymode	ch3_ssc_t ype	ch3_ssc_ spread[1]	ch3_ssc_ spread[0]	ch3_ssc_f mod[1]

www.ti.com

Table 77. EEPROM, Page 1 (continued)

WORD NO.	SECTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3Bh	Page 1	ch4_iod_ div[0]	ch4_fod[8	ch4_fod[7]	ch4_fod[6	ch4_fod[5	ch4_fod[4]	ch4_fod[3	ch4_fod[2]	ch4_fod[1]	ch4_fod[0]	ch4_fod_ msb[15]	ch4_fod_ msb[14]	ch4_fod_ msb[13]	ch4_fod_ msb[12]	ch4_fod_ msb[11]	ch4_fod_ msb[10]
3Ch	Page 1	ch4_mux[0]	ch4_iod_ mux[1]	ch4_iod_ mux[0]	ch4_iod_ div[13]	ch4_iod_ div[12]	ch4_iod_ div[11]	ch4_iod_ div[10]	ch4_iod_ div[9]	ch4_iod_ div[8]	ch4_iod_ div[7]	ch4_iod_ div[6]	ch4_iod_ div[5]	ch4_iod_ div[4]	ch4_iod_ div[3]	ch4_iod_ div[2]	ch4_iod_ div[1]
3Dh	Page 1	0	ch4_glitch less_en	ch4_sync _delay[4]	ch4_sync _delay[3]	ch4_sync _delay[2]	ch4_sync _delay[1]	ch4_sync _delay[0]	ch4_sync _en	ch4_mute _sel	ch4_mute	0	0	ch4_outb uf_ctrl[2]	ch4_outb uf_ctrl[1]	ch4_outb uf_ctrl[0]	ch4_mux[1]
3Eh	Page 1	0	0	1	1	pll_en_cp	ch0_lvcm os_drv[1]	ch0_lvcm os_drv[0]	1	ch4_1p8v det	ch4_fod_ dlymode	ch4_ssc_t ype	ch4_ssc_ spread[1]	ch4_ssc_ spread[0]	ch4_ssc_f mod[1]	ch4_ssc_f mod[0]	ch4_ssc_ en
3Fh	Page 1	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0

Copyright © 2017–2018, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

An ultra-low power clock generator is ideal to drive clocks in industrial, portable and data center applications. The device is flexible in its configuration and be pre-preprogramed with two separate configuration. For example a production test and an application configuration, or two different configurations for two flavors of a product. The internal EEPROM is protected by a CRC hash which is available as a status bit. The two EEPROM pages are selected using a control pin. As each major block of the device is powered by its own supply pin, the device can easily be used for signal translation and to accommodate various supply voltages which may be available in a system. Up to five different frequencies can be generated from a single device and feed different parts of an application. Each of the four differential outputs supports various signal standards. On one hand the general purpose pin functionality allows to provide status information to other parts of the system, on the other hand it adds modularity and flexibility to an application. Clock outputs can be muted individually or globally, the division ratio updated, the output dividers synchronized and a spread spectrum function enabled or disabled. The clock generator PLL can also be used in a zero delay mode which will compensate most of the seen phase delay between an external reference clock and the output clocks. Together with an external feedback option this allows to compensate traces on top of the digital delay steps provided inside the device. All these features make the ultra-low power clock generator for design library integration and re-use in modular projects.

9.2 Typical Applications

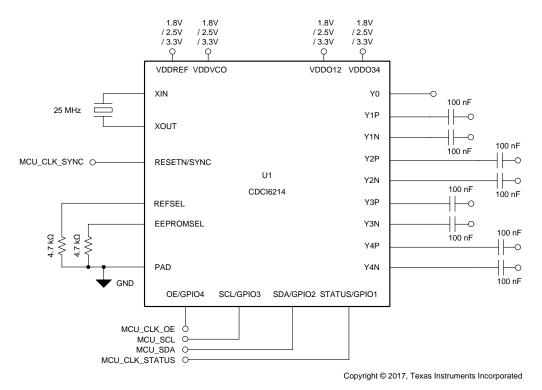


Figure 90. Typical Serial Interface Application Schematic

Copyright © 2017–2018, Texas Instruments Incorporated Product Folder Links: CDCI6214

Typical Applications (continued)

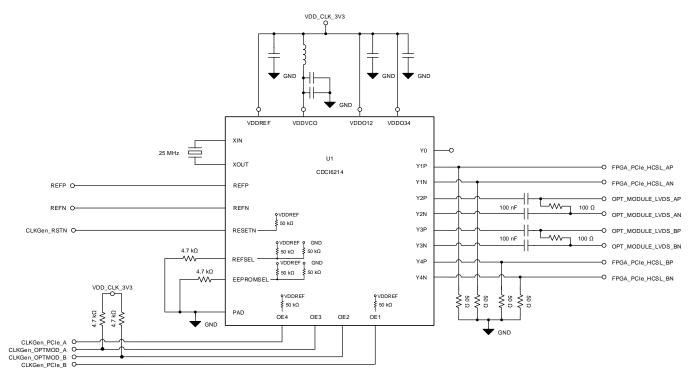


Figure 91. Typical Individual Output Enable Application Schematic

9.2.1 Design Requirements

For this example, the design parameters are listed in Table 78

 $\begin{array}{c|c} \textbf{PARAMETER} & \textbf{EXAMPLE VALUE} \\ \hline t_{VDD} & Larger than 50 \ \mu s \ and \ smaller than 3 \ ms \\ \hline t^{PWL_SYNC} & Larger than (1 \ / \ f_{XIN}) \\ \hline f_{XIN} & Crystal 8 \ MHz \ to 50 \ MHz \\ \hline dV_{IN} \ / dT & Input slew rate for external clock reference better than 3 \ V \ / \ ns \\ \hline \end{array}$

Table 78. Design Parameters

9.2.2 Detailed Design Procedure

For this application, TI recommends the following steps:

- 1. Decide how the device shall receive the register settings to plan for in-system programming of the EEPROM.
- 2. Choose which operation mode to use on the device (I²C or GPIOs) and which pins are inputs and which are outputs (see registers GENERIC0, GENERIC1, and GENERIC2).
- 3. Consider that the serial interface and the GPIOs are supplied by VDDREF as well as the input pins (for example, a 3.3-V crystal oscillator (XO) driving XIN forces uses 3.3-V I²C).
- 4. Keep track of which voltage levels the output supplies will have. There are configuration bits in the output channels (see CH1_CTRL5, CH2_CTRL5, CH3_CTRL5, and CH4_CTRL5).
- 5. Consider which output frequency has the most stringent phase noise specifications. Select this frequency to decide on the reference and VCO frequency.
- Cross-check if your specific bandwidth requirement for an external reference can be achieved using the internal loop filter components (see registers PLL1 and PLL2).
- 7. Optimize the clock distribution using output muxes to run the least amount of blocks to conserve power,

8. For HCSL output buffer format, optimize the signal integrity and slew rate at the receiver input using a series resistor between device pin and the 50 Ω termination to GND.Y1,Y4 provide higher slew rates compared to Y2,Y3.

Use Equation 6 through Equation 9 to calculate the a basic frequency plan or use the provided software TICS Pro to generate settings.

NOTE

The user has to ensure PLL stability is given by applying the adequate loop filter and charge pump settings. A phase margin of $\geq 68^{\circ}$ is recommended. The target bandwidth is recommended between 600 kHz .. 1100 kHz.

$$f_{Y0} = f_{XIN} = f_{REF}$$

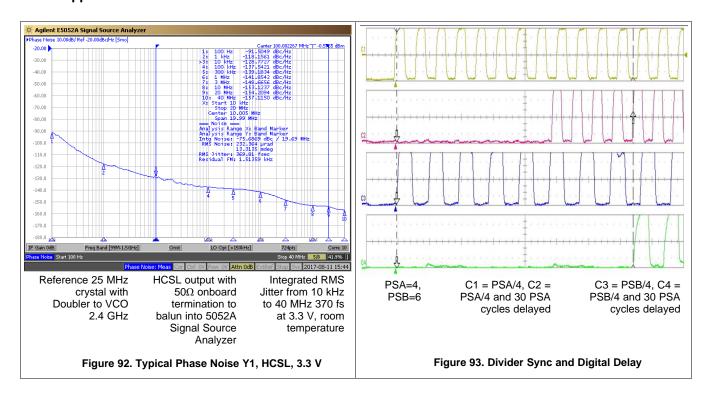
$$f_{PFD} = f_{REF} / ip_ref_div$$
(6)

where

- ip_ref_div ≥ 1
- 1 MHz $\leq f_{PFD} \leq 100 \text{ MHz}$ (7)

 $f_{VCO} = f_{PFD} \cdot pll_nc \cdot (pll_ps + 4)$

with


- 2400 <= f_{VCO} <= 2800
- $0 \le pll_ps \le 2$ (8)

 $f_{Y[4:1]} = f_{VCO} / ((pll_ps[ab] + 4) \cdot ch[4:1]_iod_div)$

with

- 0 <= pll_ps[ab] <= 2
- 1 <= ch[4:1]_iod_div <= 16383
- 44.1 kHz \leq f_{Y[4:1]} \leq 350 MHz (9)

9.2.3 Application Curves

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

9.3 Do's and Don'ts

The maximum swing and level must match to the applied VDDREF (for example, for a 3.3-V XO as reference, VDDREF must be 3.3 V).

9.4 Initialization Setup

The device digital logic starts after the internal power-on-release circuit triggered (POR). The digital core is connected to the VDDREF domain. The EEPROM settings are loaded into the device registers and the new settings applied to the device. The EEPROM page is selected according to the EEPROMSEL pin logic level. A low level loads *page 0*, and a logic high level loads *page 1*. By default, the differential outputs are muted for the initial VCO calibration and PLL lock process. After the PLL circuit achieved a phase lock to the input reference, the output dividers are synchronized and then released to operation. By default, pin 8 is configured as RESETN pin (see gpio0_dir_sel and gpio0_input_sel). The start of the initialization sequence, as well the as serial interface, can be kept in reset using RESETN= LOW. When pin 8 is not configured as RESETN, the device initialization relies on the POR triggered by application of VDDREF.

Initialization Setup (continued)

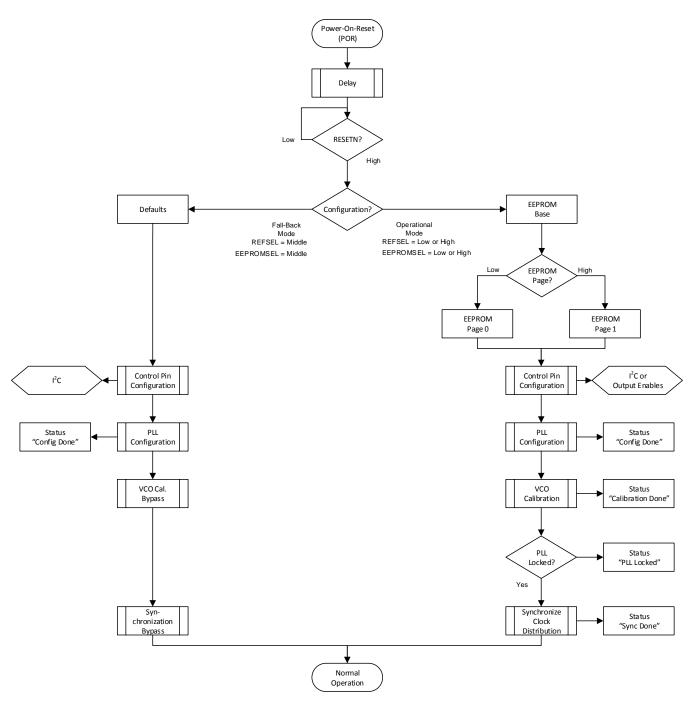


Figure 94. Initialization Flow Chart

The pins 8, 11, 12, 19, and 20 are general-purpose inputs and outputs (GPIO). The functions are determined through the register settings saved in the selected EEPROM page. See GENERIC0, GENERIC1, and GENERIC2 for the relevant bit-fields.

The EEPROM allows to choose between two modes of operation: pin Mode and serial interface mode. This is done using mode.

10 Power Supply Recommendations

10.1 Power-Up Sequence

There are no restrictions from the device for applying power to the supply pins. From an application perspective, TI recommends to either apply all VDDs at the same time or apply VDDREF first. The digital core is connected to VDDREF and thus settings of the EEPROM are applied automatically.

10.2 De-Coupling

TI recommends isolating all power supplies using a ferrite bead and provide decoupling for each of the supplies. TI also recommends optimizing the decoupling for the respective layout and consider the power supply impedance and optimize for the individual frequency plan.

An example for a decoupling per supply pin: 1x 4.7 µF, 1x 470 nF, and 1x 100 nF.

11 Layout

11.1 Layout Guidelines

For this example, follow these guidelines:

- Isolate inputs and outputs using a GND shield. Figure 95 routes all inputs and outputs as differential pairs.
- Isolate outputs to adjacent outputs when generating multiple frequencies.
- Isolate the crystal area, connect the GND pads of the crystal package and flood the adjacent area. Figure 96 shows a foot print which supports multiple crystal sizes.
- Try to avoid impedance jumps in the fan-in and fan-out areas when possible.
- Use five VIAs to connect the thermal pad to a solid GND plane. Full-through VIAs are prefered.
- Place decoupling capacitors with small capacitance values very close to the supply pins. Try to place them
 very close on the same layer or directly on the backside layer. Larger values can be placed more far away.
 Figure 96 shows three de-coupling capacitors close to the device. Ferrite beads are recommended to isolate
 the different frequency domains and the VDDVCO domain.
- Preferably use multiple VIAs to connect wide supply traces to the respective power planes.

11.2 Layout Examples

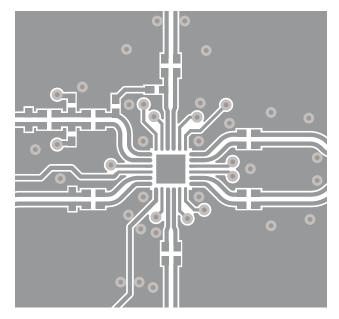


Figure 95. Layout Example, Top Layer

Layout Examples (continued)

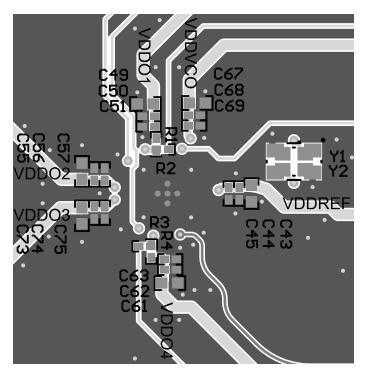


Figure 96. Layout Example, Bottom Layer

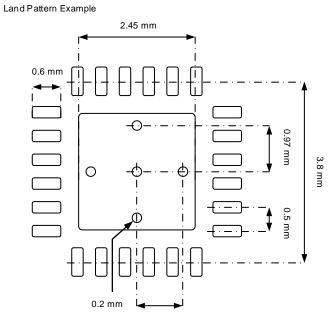


Figure 97. Layout Example, Land Pattern

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

Contact your TI representative for more information.

12.1.2 Device Nomenclature

CDCI6214 - 62= clock generator 1= 1x PLL 4=4x outputs I = individual output enables

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

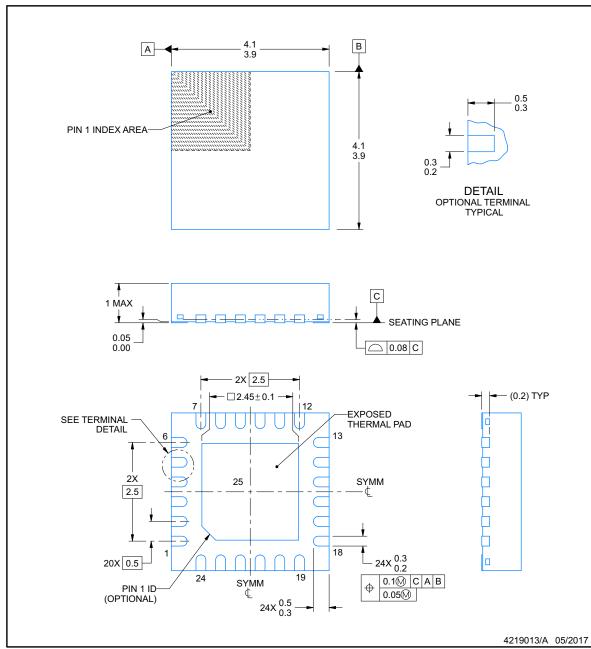
12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.


RGE0024B

PACKAGE OUTLINE

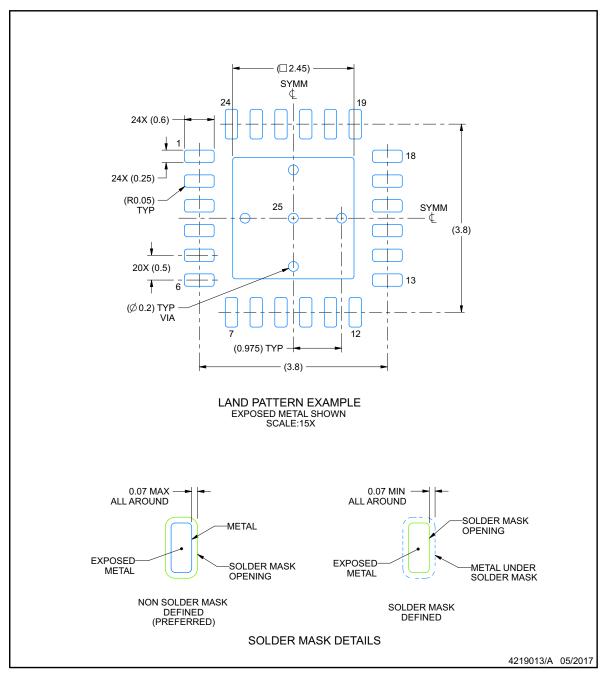
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

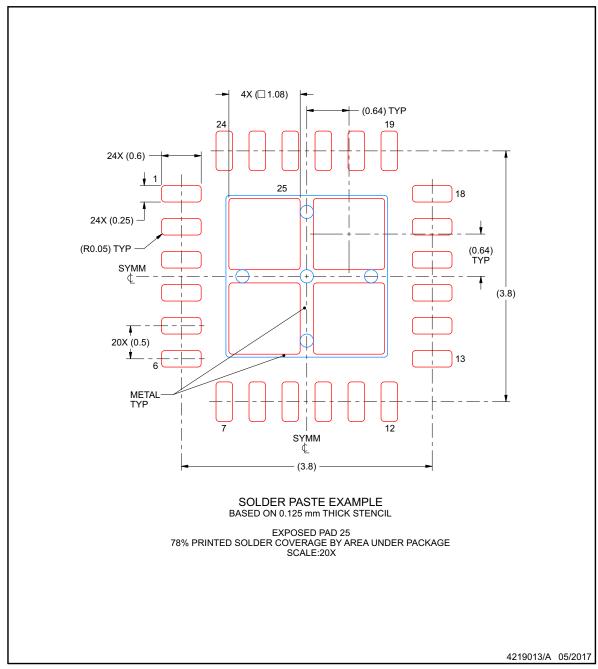
RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

Submit Documentation Feedback Product Folder Links: CDCI6214

PACKAGE OPTION ADDENDUM

22-Nov-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CDCl6214RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCI 6214A1	Samples
CDCl6214RGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCI 6214A1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

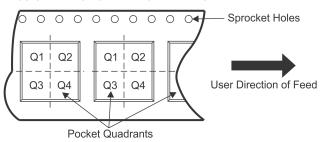
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

22-Nov-2017

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Nov-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

7 til dillionololio aro nomina												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCI6214RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
CDCI6214RGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 22-Nov-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CDCI6214RGER	VQFN	RGE	24	3000	367.0	367.0	35.0	
CDCI6214RGET	VQFN	RGE	24	250	210.0	185.0	35.0	

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.