
TL/DD10346

H
ig

h
P
e
rfo

rm
a
n
c
e

C
o
n
tro

lle
r
in

In
fo

rm
a
tio

n
C

o
n
tro

l
A

p
p
lic

a
tio

n
s

A
N

-5
8
5

National Semiconductor
Application Note 585
Steve McRobert
June 1989

High Performance
Controller
in Information Control
Applications

ABSTRACT

This paper describes National Semiconductor’s HPCTM

family of High Performance microControllers. Included are

two examples showing how the devices are used in actual

Information Control applications.

The architecture, technology, and instruction set of the HPC

family are presented, with emphasis on how these features

are appropriate for use in microcontroller based information

control systems. Two example applications are given, the

first being the use of a single chip mode HPC as an I/O

processor and interrupt handler in a laser beam printer. In

this case the HPC acts as a slave to the main 32-bit CPU in

the printer, freeing it from the many tasks which require fast

interrupt response and thus improves system throughput.

The second example shows the HPC used in expanded

mode as the sole microprocessor in an ESDI to SCSI bridge

adapter card. The operations performed by the HPC in this

application are used as an example of how the instruction

set and addressing modes work together to achieve high

throughput. The paper concludes with a brief discussion of

the future of the HPC family of devices.

INTRODUCTION

The HPC (High Performance Controller) family of microcon-

trollers was designed by National Semiconductor as the first

of a new generation of 16-bit CMOS microcontrollers.

The intention was to start afresh, using the experience

gained from earlier device families and, without software

compatibility constraints, to create an architecture suffi-

ciently advanced to be competitive for 10 years or more.

Other design goals were to minimize device complexity,

thus allowing for dependable, economical, high volume pro-

duction, and to make HPC easy to understand so that sys-

tem designers could readily convert designs to use the new

family’s advanced features.

These goals have been met, and, since the first device was

sampled in early 1986, the HPC family has developed into a

well proven solution to many design problems.

ARCHITECTURE

The HPC family is based on a core concept. All devices

share a common core including the CPU and a base set of

peripherals such as timer/counters etc. Figure 1 shows a

block diagram of the HPC16083 with the core emphasized

at left. HPC uses a memory-mapped Von Neuman architec-

ture, in which all registers, I/O ports, peripherals etc. are

assigned memory locations in one uniform address space.

This includes the CPU registers (Figure 1) , allowing all HPC

instructions to operate on every register in the program-

mer’s model. Such uniformity simplifies the work of the as-

sembly language programmer and the writer of the C com-

piler, making the HPC a particularly efficient microcontroller

for running programs written in ‘‘C’’.

TL/DD/10346–1

FIGURE 1. HPC16083 Block Diagram

HPCTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



The core is connected to peripherals and on-chip memory

by a 16-bit address/data bus, which is multiplexed to reduce

die size. This bus is brought out on the A port when the

device is used in expanded and/or ROMless modes, allow-

ing off-chip devices to be accessed in exactly the same

fashion as on-chip memory or peripherals.

When writing assembly language or C instructions the pro-

grammer perceives no difference between on-chip and off-

chip memories, but both assembler and compiler take ac-

count of two key differences. When the HPC is run at high

oscillator frequencies (up to 30 MHz on current production

devices) a wait state must be applied for accesses to exter-

nal memories or peripherals, but are never applied to on-

chip RAM or registers. The other difference is that accesses

to on-chip locations with addresses below 100 hexadecimal

(called basepage accesses) require only a one byte ad-

dress, so are thus shorter and faster than accesses to non-

basepage locations (Figure 2) .

FFF:FFF0 INTERRUPT VECTORS HPC16083

FFEF:FFD0 JSRP VECTORS
ON-CHIP ROM

FFCF:E000 GENERAL PURPOSE ROM
SPACE

DFFF:0200 EXPANDED MODE EXTERNAL

ADDRESS SPACE USER

MEMORY

0IFF:0IC0 ON-CHIP RAM
ON-CHIP RAM

0IBF:00C0 ON-CHIP REGISTERS
AND REGISTERS

00BF:0000 ON-CHIP RAM

FIGURE 2

The programmer must choose which variables to put into on

chip RAM or the basepage to achieve maximum perform-

ance and code efficiency.

Basepage RAM, because it is very fast and efficient to use,

provides many of the benefits of the register file architecture

used on some other microcontrollers. The HPC is different,

however, in that it has a small set of registers: Accumulator,

B pointer, X pointer and K (or limit) register. These registers

all have addresses and can be used as general purpose

memory locations, but are best used for their special func-

tions. Many HPC instructions have two operands, the

source and the destination. If the Accumulator (A) register is

used as the destination, this is implied in the opcode and

the address of A need not be included in the instruction,

thus making it shorter and faster than instructions using an-

other memory location as the destination. If the address of

the source is contained in the B register then this too can be

implied from the opcode and the whole instruction becomes

one byte long.

Most HPC instructions thus have a single-byte form, using

the B or X register as a pointer to the memory location being

accessed.

The use of the K register will be discussed in the next sec-

tion.

The primary objective when designing the architecture and

instruction set of HPC was to minimize code size, an ap-

proach which can reduce throughput if unlimited bus band-

width is available. In typical microcontroller applications the

use of external memory is undesirable for board space and

cost reasons. If the code is too large for mask ROM, the

best solution in terms of space and cost is a single, relative-

ly slow, EPROM.

In this situation of low bus bandwidth, the high byte efficien-

cy of the HPC goes hand-in-hand with good performance.

ADDRESSING MODES

In keeping up with the HPC philosophy of being simple and

quick to understand, the HPC instruction set (Figure 3) has

relatively few mnemonics. This is because for those instruc-

tions with one or two addressable operands the same mne-

monic is used regardless of the addressing mode, operand

size (byte or word) or address size (depending upon wheth-

er each operand is in the basepage or not). Each individual

memory location may be addressed using one of the follow-

ing addressing modes:

Direct: The 8- or 16-bit address is included in the

series of bytes that make up the instruc-

tion.

Indirect: The 8-bit address of a word in the base

page is included in the instruction. The

contents of this word are used as a point-

er to the variable to be accessed.

Mnemonic Description Action

ARITHMETIC INSTRUCTIONS

ADD Add MAaMemIxMA carryxC

ADC Add with carry MAaMemIaCxMA carryxC

ADDS Add short imm8 MAaimm8xMA carryxC

DADC Decimal add with carry MAaMemIaCxMA (Decimal) carryxC

SUBC Subtract with carry MAbMemIaCxMA carryxC

DSUBC Decimal subtract w/carry MAbMemIaCxMA (Decimal) carryxC

MULT Multiply (unsigned) MA*MemIxMA & X, 0xK, 0xC

DIV Divide (unsigned) MA/MemIxMA, rem.xX, 0xK, 0xC

DIVD Divide Double Word (unsigned) (X & MA)/MemIxMA, remxX, 0xK, carryxC

IFEQ If equal Compare MA & MemI, Do next if equal

IFGT If greater than Compare MA & MemI, Do next if MA l MemI

AND Logical and MA and MemIxMA

OR Logical or MA or MemIxMA

XOR Logical exclusive-or MA xor MemIxMA

MEMORY MODIFY INSTRUCTIONS

INC Increment Mem a 1xMem

DECSZ Decrement, skip if 0 Mem b1xMem, Skip next if Mem e 0

FIGURE 3. HPC Instruction Set Description

2



Mnemonic Description Action

BIT INSTRUCTIONS

SBIT Set bit 1xMem.bit

RBIT Reset bit 0xMem.bit

IFBIT If bit If Mem.bit is true, do next instr.

MEMORY TRANSFER INSTRUCTIONS

LD Load MemIxMA

Load, incr/decr X Mem(X)xA, X g1 (or 2)xX

ST Store to Memory AxMem

X Exchange AÝMem

Exchange, incr/decr X AÝMem(X), X g1 (or 2)xX

PUSH Push Memory to Stack WxW(SP), SPa2xSP

POP Pop Stack to Memory SPb2xSP, W(SP)xW

LDS Load A, incr/decr B, Mem(B)xA, B g1 (or 2)xB,

Skip on condition Skip next if B greater/less than K

XS Exchange, incr/decr B, Mem(B)ÝA,Bg1 (or 2)xB,

Skip on condition Skip next if B greater/less than K

REGISTER LOAD IMMEDIATE INSTRUCTIONS

LD B Load B immediate immxB

LD K Load K immediate immxK

LD X Load X immediate immxX

LD BK Load B and K immediate immxB,immxK

ACCUMULATOR AND C INSTRUCTIONS

CLR A Clear A 0xA

INC A Increment A A a 1xA

DEC A Decrement A A b 1xA

COMP A Complement A 1’s complement of AxA

SWAP A Swap nibbles of A A15:12wA11:8wA7:4ÝA3:0

RRC A Rotate A right thru C CxA15 x . . . xA0xC

RLC A Rotate A left thru C CwA15 w . . . wA0wC

SHR A Shift A right 0xA15x . . . xA0xC

SHL A Shift A left CwA15w . . . wA0w0

SC Set C 1xC

RC Reset C 0xC

IFC IF C Do next if C e 1

IFNC IF not C Do next if C e 0

TRANSFER OF CONTROL INSTRUCTIONS

JSRP Jump subroutine from table PCx [SP],SPa2xSP

W(tableÝ)xPC

JSR Jump subroutine relative PCx [SP],SPa2xSP,PCaÝxPC

(Ýis a1025 to b1023)

JSRL Jump subroutine long PCx [SP],SPa2xSP,PCaÝxPC

JP Jump relative short PCaÝxPC(Ý is a32 to b31)

JMP Jump relative PCaÝxPC(Ýis a257 to b255)

JMPL Jump relative long PCaÝxPC

JID Jump indirect at PC a A PCaAa1xPC

JIDW then Mem(PC)aPCxPC

NOP No Operation PC a 1 xPC

RET Return SPb2xSP,[SP]xPC

RETSK Return then skip next SPb2xSP,[SP]xPC, & skip

RETI Return from interrupt SPb2xSP,[SP]xPC, interrupt re-enabled

Note: W is 16-bit word of memory

MA is Accumulator A or direct memory (8 or 16-bit)

Mem is 8-bit byte or 16-bit word of memory

MemI is 8- or 16-bit memory or 8 or 16-bit immediate data

imm is 8-bit or 16-bit immediate data

imm8 is 8-bit immediate data only

FIGURE 3. HPC Instruction Set Description

3



Xx 0100

Bx 0400

Kx 0600

LD X,Ý0100 ; Point to beginning of source code

LD BK,Ý 0400, Ý0600;P ; Point to beginning & end of target

LOOP: LD A, [Xa].W ; Get word from source block

XS A, [Ba].W ; Store it at target

JP LOOP

FIGURE 4. Word Block Move

Indexed: As Indirect, but with an 8- or 16-bit imme-

diate offset added to the pointer.

Register Indirect: As indirect, but the B or X registers are

used as pointers, with their addresses im-

plied in the opcode.

Immediate: Only for the source in two-operand in-

structions. An 8- or 16-bit immediate value

is included in the instruction.

The first four addressing modes are used both for single

operand instructions e.g. bit set, bit clear, bit test, increment,

decrement, and two operand instructions such as ADD and

LD.

Direct and immediate modes can be used in combination,

allowing operations to be performed directly on memory or

registers without using the accumulator.

Two variables, each byte or word, each located anywhere in

memory, can be compared, added, divided or have any of

the other two-address instructions performed on them. This

improves the byte-efficiency of the HPC, and enhances the

power of the instruction set in that it takes less lines of

assembly code to perform a given function than it would for

earlier, completely accumulator-based CPUs.

An important benefit provided by the indirect and indexed

modes is that any of the 96 words of RAM or the basepage

registers, such as port A or the accumulator, may be used

as pointers.

There are two special addressing modes which are used

only with the LD and X (exchange) instructions. These

modes are called auto increment/decrement and auto in-

crement/decrement with conditional skip, and their use is

illustrated by the example shown in Figure 4.

This example uses the B pointer, the X pointer and the K

register to move a block of data one word at a time. Some

points to note are that the LD BK instruction initializes both

registers with one instruction, and that both the LD and XS

instructions increment the pointer by two because two bytes

(one word) are moved. The S in XS signifies the conditional

skip. After A has been exchanged with the word pointed to

by B, B is incremented, then compared with K. If B is greater

than K (or, for an XS A, [Bb] instruction, if B is less than K)

the next statement is skipped over, thus terminating the

loop. This example epitomizes the approach taken in de-

signing the HPC family.

String operations are built up from simple data movement

instructions, allowing them to be interrupted at any time with

no need for complex re-start or recovery schemes.

INSTRUCTION SET

The HPC instruction set is noticeably different from other

16-bit controllers, in that many of its instructions are single

byte. How this is achieved can be seen by looking at the

opcode map (Figure 5) .

Instructions such as bit manipulation operations and single

byte jumps (JP) use many opcodes for the same mnemonic.

This is because information, such as the jump length for JP,

is coded into the opcode.

This makes these instructions very efficient, and enhances

the performance of the HPC in information control applica-

tions, where decision making and bit manipulation opera-

tions tend to be important.

All of the arithmetic, comparison, logical and data move-

ment instructions have a single byte form using register indi-

rect addressing mode. The opcode space ‘‘used up’’ by

having many opcodes for a few instructions is restored by

using addressing mode prefixes for the less commonly used

addressing modes. These make instructions using these

modes one byte longer, but the use of these prefixes allows

all of the two address instructions to use all of the address-

ing modes. Without the prefixes the HPC would run out of

opcode space and restrictions would have to be placed on

some instructions, making the assembly language much

harder to use and the C compiler harder to write. Examples

are given in Figure 6 of several combinations of instructions

and addressing modes, with execution times for systems

using low cost external memories.

4



C.13 HPC OPCODE MAP

LSB/MSBx
0 1 2 3 4 5 6 7

0 CLR A IFBIT 0 JSRP 0 JSR a JP a1* JP a17 JP 0 JP b16

1 COMP A IFBIT 1 JSRP 1 JSR a JP a2 JP a18 JP b1 JP b17

2 SC IFBIT 2 JSRP 2 JSR a JP a3 JP a19 JP b2 JP b18

3 RC IFBIT 3 JSRP 3 JSR a JP a4 JP a20 JP b3 JP b19

4 INC A IFBIT 4 JSRP 4 JSR b JP a5 JP a21 JP b4 JP b20

5 DEC A IFBIT 5 JSRP 5 JSR b JP a6 JP a22 JP b5 JP b21

6 IFNC IFBIT 6 JSRP 6 JSR b JP a7 JP a23 JP b6 JP b22

7 IFC IFBIT 7 JSRP 7 JSR b JP a8 JP a24 JP b7 JP b23

8 SBIT 0 RBIT 0 JSRP 8 RBIT X JP a9 JP a25 JP b8 JP b24

9 SBIT 1 RBIT 1 JSRP 9 SBIT X JP a10 JP a26 JP b9 JP b25

A SBIT 2 RBIT 2 JSRP 10 IFBIT X JP a11 JP a27 JP b10 JP b26

B SBIT 3 RBIT 3 JSRP 11 SWAP A JP a12 JP a28 JP b11 JP b27

C SBIT 4 RBIT 4 JSRP 12 RET JP a13 JP a29 JP b12 JP b28

D SBIT 5 RBIT 5 JSRP 13 RETSK JP a14 JP a30 JP b13 JP b29

E SBIT 6 RBIT 6 JSRP 14 RETI JP a15 JP a31 JP b14 JP b30

F SBIT 7 RBIT 7 JSRP 15 POP JP a16 JP a32 JP b15 JP b31

8 9 A B C D E F

0 Dir–Dir LD A,i Dir–Dir LD A,ii LDS [Ba].b LD [Xa],b LDS [Ba].w LD [Xa].w
1 Dir–Dir LD K,i Dir–Dir LD K,ii XS [Ba].b X [Xa],b XS [Ba].w X [Xa].w
2 Imm–Dir LD B,i Index LD B,ii LDS [Bb].b LD [Xb],b LDS [Bb].w LD [Xb].w
3 Imm–Dir LD X,i Ð LD X,ii XS [Bb].b X M[Xb],b XS [Bb].w X [Xb].w
4 Dir–Dir JMPa Dir–Dir JMPL LD [B].b LD [X].b LD [B].w LD [X].w
5 Dir–Dir JMPb Dir–Dir JSRL X [B].b X [X].b X [B].w X [X].w
6 Imm–Dir Direct Index Direct ST [B].b ST [X].b ST [B].w ST [X].w
7 Imm–Dir LD bd,i LD BK,ii LD wd,ii SHR A RRC A SHL A RLC A

8 LD A,bd ADD A,i LD A,wd ADD A,ii ADC A,b ADD A,b ADC A,w ADD A,w

9 INC bd AND A,i INC wd AND A,ii DADC A,b AND A,b DADC A,w AND A,w

A DECSZ bd OR A,i DECSZ wd OR A,ii DSUBC A,b OR A,b DSUB A,w OR A,w

B ST A,bd² XOR A,i ST A,wd² XOR A,ii SUBC A,b XOR A,b SUBC A,w XOR A,w

C LD bd,bd IFEQ A,i LD wd,wd IFEQ A,ii JID IFEQ A,b JIDW IFEQ A,w

D LD BK,i IFGT A,i Indirect IFGT A,ii Ð IFGT A,b Ð IFGT A,w

E X A,bd MULT A,i X A,wd MULTA,ii Ð MULT A,b Ð MULT A,w

F XIndirect DIV A,i PUSH DIV A,ii DIVD A,b DIV A,b DIVD A,w DIV A,w

Ð e opcode is reserved for future use.

b e byte of memory

bd e direct byte of memory

i e 8-bit immediate value

w e word of memory

wd e direct word of memory

ii e 16-bit immediate value

Dir–Dir, Imm–Dir, Index, Direct, Indirect and XIndirect are all Addressing Mode directives.

Notes:

*NOP is the same as JP a 1 and has the same opcode.

²These opcodes are LD if prefixed by Dir–Dir or Imm–Dir directive.

FIGURE 5

5



20 MHz 30 MHz

CLR A 300 ns 200 ns

RRC A 400 ns 267 ns

LD B, H’3CF2 600 ns 400 ns

IFBIT 7,[B].B 800 ns 533 ns

ST A,38.W 900 ns 600 ns

JSR 1.10 ms 733 ms

JSRL 1.40 ms 933 ms

ADC [H’10].W, [H’20].W 1.70 ms 1.13 ms

DSUBC [H’A0].W, [H’B0].W 2.00 ms 1.33 ms

MULT A, [B].W 5.90 ms 3.93 ms

DIVD A,[X].W 6.40 ms 4.27 ms

Times Calculated with 1 Wait State Inserted

FIGURE 6. Typical Execution Times

There are many more powerful features of the HPC instruc-

tion set, but space does not permit describing them here.

For more information see the documents listed in the refer-

ences section.

TECHNOLOGY

The HPC family and nearly all other new National Semicon-

ductor analog and digital VLSI devices are fabricated in an

advanced double metal process called M2CMOS. This is a

very high speed process, as shown by the current produc-

tion two micron (drawn) HPC46083, which is available as a

30 MHz version.

The HPC family has been migrated to a 1.5 micron (drawn)

process for the first part with an analog to digital converter

on chip, the HPC46164.

National Semiconductor already manufactures the

NS32532 microprocessor in 1.25 micron M2CMOS, and will

shrink this process still further in the future. The HPC devic-

es will be migrated to these smaller geometries and will ben-

efit from other process developments such as on chip

EPROM.

INFORMATION CONTROL APPLICATIONS

Laser Beam Printer Front End Processor

This section describes a customer’s application for an

HPC46083 used in single chip mode. It makes use of the

Universal Peripheral interface (UPI) port which is a feature

of all HPC devices with on-chip mask ROM.

The UPI port allows an HPC device to be used as a periph-

eral to a host processor, connected to the host via its data

bus. The HPC in UPI mode appears to the host to be a

peripheral device such as a UART, but provides additional

processing power, relieving the host of interrupt-intensive

tasks and thus improving the host’s performance.

The UPI port of the HPC provides status signals to both the

HPC CPU and that of the host which ensure that no data is

lost when the CPUs communicate.

In the laser beam pointer (LBP) application (Figure 7) , the

HPC handles the serial and Centronics interfaces of the

printer, buffering received characters and interrupting the

host CPU when a block of up to 128 characters has been

received. When the host CPU (a National Semiconductor

NS32CG16 printer/display controller) is interrupted it then

transfers the whole block of data into its own memory very

rapidly.

This approach reduces the number of interrupts received by

the 32CG16 by a factor of over 100 compared to a solution

using a conventional UART while being simpler, cheaper

and offering higher system performance than using a DMA

approach. These overhead reductions are very important in

LBP systems, because the main CPU must keep up with the

paper movement, otherwise image data will be lost.

In addition to improving printer performance, the HPC re-

duces the system cost by providing functions that would

otherwise need extra devices. The HPC acts as the interrupt

controller for the 32CG16, generating an interrupt signal to it

and then placing the interrupt vector on the UPI port when

the 32CG16 acknowledges the interrupt. Another function

provided by the HPC is an intelligent interface to the printer

front panel displays and push buttons controlling such func-

tions as LCD contrast. Finally, the HPC implements a serial

interface to the electronic subsystem of the printer engine

itself, providing diagnostic capability to the 32CG16. For all

of these functions, the HPC performs first-level error check-

ing, further relieving the main CPU of minor tasks.

The LBP is at one extreme of the range of HPC applications,

where the HPC uses virtually nothing but its on-chip periph-

erals and memories.

The next section deals with an application towards the other

end of the range.

TL/DD/10346–2

FIGURE 7

6



TL/DD/10346–3

FIGURE 8

SCSI Bridge Adapter

The fast growing usage of Winchester disk drives in the

Small Computer System Interface (SCSI) environment has

provided another important market for the HPC family.

The HPC architecture is well suited for use in embedded

SCSI systems, as the peripherals such as the SCSI inter-

face device may be memory mapped into the HPC address

space, allowing bit and byte manipulation operations to be

performed directly on the registers of the peripheral using

single assembly language instructions. Many SCSI interface

devices are relatively unintelligent, requiring the CPU to per-

form many bit test, set, and clear operations to set up a data

transfer operation. Most other microcontrollers need up to

three instructions to set a bit in one of these peripherals,

thus reducing drive performance.

National Semiconductor has produced an ESDI-to-SCSI

bridge adapter board, which demonstrates the use of the

HPC46003 and the DP8466A disk data controller in a real

synchronous SCSI system. A software package has been

written in HPC assembly language which implements the

SCSI common command set and is available in source code

form to companies wishing to use the HPC in embedded

SCSI or host adapter designs.

The code was written in HPC assembly language because

for very high volume, cost sensitive designs, like a disk

drive, the extra development cost of writing in assembler is

outweighed by the advantages of reduced code size and

improved performance.

The adapter board design (Figure 8) uses the HPC46003

running in 8-bit mode with a single EPROM providing pro-

gram memory. Data memory is provided by the 256 bytes of

on-chip RAM which provides fast scratch pad and stack

space.

One important function in embedded SCSI disk drives is

logical to physical address conversion, in which a logical

address (typically 24 bits) is divided twice by constants, the

result and the two remainders being the head, cylinder and

sector numbers.

The HPC is capable of dividing a 32-bit number by a 16-bit

number in under four microseconds, thus providing a dra-

matic improvement in logical to physical address conversion

time compared to earlier 8-bit microcontroller solutions. As

a final point in this necessarily brief discussion, the HPC

uses very little power due to its advanced CMOS manufac-

turing technology. This is important in disk drive applica-

tions, where low power consumption is an important per-

formance parameter for the end product.

7



A
N

-5
8
5

H
ig

h
P
e
rf

o
rm

a
n
c
e

C
o
n
tr

o
ll
e
r
in

In
fo

rm
a
ti
o
n

C
o
n
tr

o
l
A

p
p
li
c
a
ti
o
n
s

CONCLUSION AND FUTURE DEVELOPMENTS

This paper has discussed the design of the HPC family and

described two actual applications in important market areas.

The development work performed for these and other proj-

ects has shown that the HPC architecture provides very

high performance in embedded control applications.

The plans for future products are to take the high perform-

ance core and add various combinations of peripherals,

thus allowing the family to reach a wide range of markets.

Figure 9 shows some of the current and future devices.

HPC16083 8K ROM, 256 RAM

HPC16003 ROMless, 256 RAM

HPC16400 256 RAM, 2 HDLC a 4 DMA Channels

HPC16164 16K ROM, 512 RAM, 8 Channel ADC

HPC16064 16K ROM, 512 RAM

HPC16104 ROMless, 8 Channel ADC

HPC16004 ROMless, 512 RAM

HPC167164 16K EPROM, 512 RAM, 8 Channel ADC

FIGURE 9. HPC Family Devices Principal Features

REFERENCES

National Semiconductor Application Note AN-510: Assem-
bly Language programming for the HPC.

National Semiconductor Publication Number 424410897-

001A July 1987: HPC16083/HPC16043/HPC16003 User’s
Manual.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


