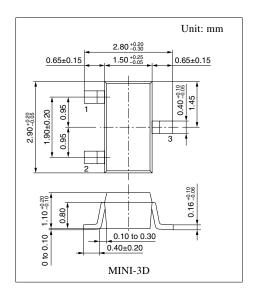
AN1432MS

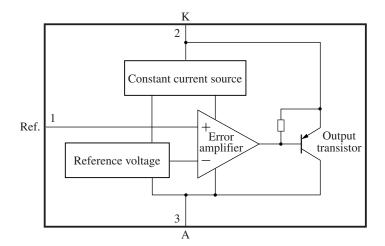
Variable output, low voltage operation shunt regulator

Overview

The AN1432MS is a low voltage operation and positive voltage variable output type shunt regulator. Since the output voltage is adjustable from approximately 1.26 V to 15 V, it is suitable for a power supply of small-sized 3 V-system portable equipment. Also, it contributes to the miniaturization of set equipment by the adoption of the small type surface mounting package.


■ Features

• High accuracy reference voltage: 1.26 V (allowance: ±2%)


Low voltage operation: 1.26 V to 15 V
Small type surface mounting package

Applications

 Portable telephone, PHS, office automation equipment and other small-sized portable equipment

■ Block Diagram

Panasonic 1

■ Pin Descriptions

Pin No.	Description					
1	Reference	The reference voltage (1.26 V typical) pin. Although the impedance is high under the normal using conditions, be careful that the impedance drops and current flows into the IC inside if a current or voltage is forced to apply from the outside.				
2	K: Cathode	The pin for the combined use of the power source current supply of IC and the constant voltage output as the shunt regulator. An excessive current supplied to this pin is bypassed to the anode pin through the output transistor.				
3	Anode	The constant voltage reference pin of the shunt regulator, and the current from the cathode and reference flows out. Usually grounded.				

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _K	15	V
Reference voltage	V_{REF}	7	V
Supply current	I _K	20	mA
Reference current	I_{REF}	50	μΑ
Cathode — anode reverse current	-I _{KA}	-10	mA
Cathode — reference reverse current	-I _{KR}	-10	mA
Power dissipation *2	P_{D}	104	mW
Operating ambient temperature *1	T_{opr}	-30 to +85	°C
Storage temperature *1	T_{stg}	-55 to +150	°C

Note) 1. Do not apply external currents or voltages to any pins not specifically mentioned.

For circuit currents, '+' denotes current flowing into the IC and '-' denotes current flowing out of the IC.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit	
Supply voltage	V _{CC}	V _{REF} to 15	V	

■ Electrical Characteristics at $T_a = 25$ °C

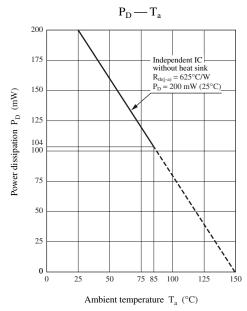
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reference voltage	V _{REF}	$V_{KA} = V_{REF}$, $I_K = 10 \text{ mA}$	1.235	1.26	1.285	V
Reference voltage fluctuation 1	ΔV_{REF} /	$ V_{REF} \le V_{KA} \le 5 V$,	_	1.9	3.5	mV/V
	ΔV_{KA}	$I_K = 10 \text{ mA}$				
Reference voltage fluctuation 2	ΔV_{REF} /	$5 \text{ V} \le \text{V}_{\text{KA}} \le 15 \text{ V},$	_	1.0	2.0	mV/V
	ΔV_{KA}	$I_K = 10 \text{ mA}$				
Reference input current	I_{REF}	$R_I = 10 \text{ k}\Omega$, $I_K = 10 \text{ mA}$		2.5	4.4	μA
Minimum cathode current	I _{K min}	$V_{KA} = V_{REF}$	_	290	350	μA
Off time cathode current	I _{K OFF}	$V_{KA} = 15 \text{ V}, V_{REF} = 0 \text{ V}$		_	1.0	μA
Dynamic impedance	$ Z_{KA} $	$V_{KA} = V_{REF}$, $f \le 1$ kHz,	_	0.1	0.5	Ω
		$I_K = 1 \text{ mA to } 10 \text{ mA}$				

2 Panasonic

^{2.} *1: Except for the power dissipation, operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

^{*2:} The value at $T_a = 85$ °C.

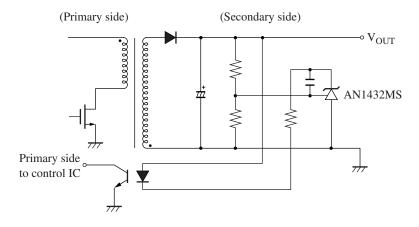
■ Electrical Characteristics at T_a = 25°C (continued)


• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Reference value	Unit
Reference voltage change with temperature	$\Delta V_{REF} / \Delta T_a$	$V_{KA} = V_{REF}, I_{KA} = 10 \text{ mA}$ $0 \text{ °C} \le T_a \le +70 \text{ °C}$	3	mV
Reference input current change with temperature	ΔI_{REF} / ΔT_a	$R_1 = 10 \text{ k}\Omega, I_K = 10 \text{ mA}$ 0 °C ≤ T_a ≤ +70 °C	0.4	μА

■ Application Notes


• P_D — T_a curve of MINI-3D

■ Application Circuit Example

This circuit amplifies the error voltage of the secondary side output voltage in the insulation type switching power supply, then transfers it to the primary side via a photocoupler.

Replaceable with the conventional product (AN1431M, AN1431T).

3