FEATURES

- 10MHz Serial or Parallel Data Rate
- Serial or Parallel Input and Output
- Expandable Without External Logic
- Three-State Outputs
- Fully TTL-Compatible
- Slim (0.4 in.) 24-Pin DIP

PRODUCT DESCRIPTION

The 9403 is an expandable fall-through type First-In First-Out (FIFO) Buffer Memory that is optimized for high-speed disc/tape controllers and communication-buffer applications. In multiples of four, the device can be expanded to any number of bits and subsequently, to any number of words. Serial or parallel data can be asynchronously entered or retrieved which makes the 9403 *the* cost-effective solution for implementing buffer memories.

	N PAC	KAGE									
IRF 1 PL 2		4	24 VCC 23 ORE	MNEMONIC AND FUNCTION		DESCRIPTION Low when input register is full	M TOS	NEMONIC AND FUNCTION = Transfer out serial input	DESCRIPTION When low and TOP is high,		
D0 3		(16 ×	22 QS	PL	= Parallel load input	High on PL enables D ₀ -D ₃ , not edge-triggered, 1's catching			enables word transfer from stack to output register—not edge-triggered		
D1 4		ORY	21 Q0	D ₀ -D ₃	= Parallel data input	-	OES	= Serial output enable input	When low, enables serial output		
D3 6	403	ER MEM	19 Q2	DS CPSI	= Serial data input = Serial input clock		CPSO	= Serial output clock input	Edge-triggered and activates on falling edge		
DS 7 CPSI 8	ð	BUFFI	18 U3	IES	= Serial input enable	When low, serial input is en-	EO	= Output enable	Active low		
IES 9		FIFO	16 CPSO	TTS	= Transfer to stack input	abled When low, initiates fall-through	Q ₀ -Q ₃	= Parallel data output			
TTS 10		1-BIT	15 OES	MR	= Master Reset	Active low	ORE	= Output register empty	When high, output register con-		
GND 12		ġ	ŵ	ŵ	13 TOP	TOP	= Transfer out parallel input	When high and TOS is low, enables word transfer from	GND	output = Ground	tains valid data
	TOP	/IEW	_			stack to output register-not edge-triggered	Vcc	= Supply voltage	+5 volts		
0	RDER N	UMBE	R								
	N940)3N									

FUNCTIONAL DESCRIPTION

As shown in Figure 1, the 9403 consists of three parts which operate asynchronously and are virtually independent. These parts are:

- Input Register—with serial and parallel data inputs and control signals that permit easy expansion and a handshake interface.
- FIFO Stack—4-bit wide, 14-word deep fall-through type with self-contained control logic.
- Output Register with serial and parallel data outputs and control signals that permit easy expansion and a handshake interface.

Figure 1. Simplified Block Diagram of 9403 Buffer Memory

PIN DESIGNATIONS & DESCRIPTIONS

INPUT REGISTER

Data can be entered serially or, using the parallel mode of operation, data is entered in 4-bit increments. In either case, the data is subsequently transferred to the fall-through stack;

the functional equivalent of this register is shown in Figure 2. The Input Register Full (IRF) status signal is internally generated by the Register Status (RS) flip-flop; when initialized, the \overline{Q} (IRF) output of this flip-flop is high.

Figure 2. Functional Equivalent of Input Register

Serial Entry (Input Register)

Serial data is entered via the D_S input and is handled by a 5-bit shift register consisting of flip-flops F3, F2, F1, F0, and RS. With IES and PL both low, each high-to-low transition of the serial input clock (CPSI) shifts the input data in domino order from F3 to F2 to F1 to F0. After the fourth clock transition, the four bits of serial data are aligned in F3 through F0 and RS is set, forcing IRF low and inhibiting CPSI until contents of the input register are transferred to the stack. Figure 3 shows how a serial train of 64-bits would appear in the 9403—four bits (B60-B63) in the input register, 56 bits (B4-B59) in the stack, and four bits (B0-B3) in the output register.

Parallel Entry (Input Register)

When PL is high and CPSI is low (Figure 2), flip-flops FO-F3 are loaded with data and IRF is forced low This condition remains until current data is transferred to the stack. Once the data is transferred, IRF is driven high and new data can again be clocked into the input flip-flops. If parallel expansion is not being implemented, IES must be low to establish row mastership—refer to discussion of parallel expansion.

Figure 3. Final Bit Positions Resulting from a Serial Train of 64-Bits

STACK OPERATION

As shown in Figure 2, the outputs of F0-F3 are applied to the stack under control of a signal derived from TTS. When TTS is low, an attempt to initiate a fall-through action is made. If the top location of stack is empty, data is loaded and the input register is re-initialized provided PL is low. Note that initialization is postponed until PL is again low. Thus, automatic FIFO action is achieved by connecting the TTS input to the IRF output

OUTPUT REGISTER

This register receives and stores 4-bits of data from the bottom stack location and, on demand, outputs the data onto a three-state 4-bit parallel data bus or a three-state serial data bus. The Output Register Full (ORE) status signal is internallygenerated by the FX flip-flop, when data is transferred from the The RS flip-flop (Figure 2) records the fact that data has been transferred to the stack; this flip-flop is not cleared until PL goes low. Therefore, if a particular data word is transferred to the stack and falls to the second location before PL goes low, the same word will not be re-transferred even though IRF and TTS are still low. Once data enters the stack, "fall-through" is automatic; a delay is necessary only when waiting for the next stack location to empty. In the 9403, as in most modern FIFO designs, the IMR input initializes the stack control section and does not clear the data

Retrieval of Parallel Data

With the stack empty and MR in the active-low state, the ORE output goes low, signifying that the output register is also empty When new data is entered and has fallen through to bottom location of the stack, it is automatically transferred to the output register, provided the Transfer Out Parallel (TOP)

Figure 4. Functional Equivalent of Output Register

stack to the output register, ORE goes high The functional equivalent of the output register is shown in Figure 4

Retrieval of Serial Data

When the FIFO stack is empty and MR is driven low, the ORE output goes low to indicate that the output register is ready to accept new data from the stack. After new data is entered and falls through to the bottom stack location, it is transferred to the output register provided TOS is low and TOP is high. As a result of the data transfer, ORE goes high indicating valid data in the output register. Subsequently, the QS output is automatically enabled and the first data bit is transmitted to the three-state serial data bus. Henceforth, a serial shift of data occurs on each high-to-low transition of CPSO. On the fourth transition, the register is emptied, ORE is forced low, and serial output \overline{Q}_S is disabled. To request a new word from the stack, the TOS input can be connected to the ORE output

input is high. When the data is transferred from stack-to-register, \overrightarrow{ORE} goes high and valid data appears at Q₀-Q₃ (Figure 4), provided the three-state buffers are enabled, that is, \overrightarrow{EO} is active-low. When TOP goes low, \overrightarrow{ORE} is driven low which indicates that the data output cycle is complete; however, the original data remains latched in the flip-flops until the next word (if available) is transferred from the stack to the output register.

For parallel operation, CPSO must be low, whereas, TOS should be grounded for single-slice operation or connected to the appropriate ORE for expanded operation. The TOP input is not edge-triggered, therefore, if it goes high before data is available from stack but data becomes available before it goes low, the data will be transferred to the output register. However, internal control circuits prevent the same data from being transferred twice. If TOP goes high and returns to low before data is available from the stack, ORE will remain low, indicating the absence of valid output data.

VERTICAL EXPANSION

In a vertical structure, the 9403 can be expanded to achieve greater word capacity without any external parts; a 46-word by 4-bit FIFO is shown in Figure 5. Using the same technique and similar connections, any FIFO of 15n+1 words (where *n* is the number of devices) can be constructed. Observe that word expansion does not sacrifice flexibility of the 9403 FIFO as regards serial/parallel input and output.

HORIZONTAL EXPANSION

The 9403 can be horizontally expanded to store long words in multiples of 4-bits, again without external logic. Connections required to form a 16-word by 12-bit FIFO are shown in Figure 6, using similar techniques, any 16-word by 4n-bit FIFO (where n is the number of devices) can be constructed.

For horizontal or bit expansion, it is good practice to connect, respectively, the IRF and ORE outputs of the right-most device (most significant device) to the TTS and TOS inputs of all devices to the left (least significant devices) to guarantee that no operation is initiated before each and every device is ready Word expansion does not affect the ability of the 9403 to handle serial/parallel inputs and outputs, however, the ripple form of expansion shown in Figure 6 does extract a penalty in speed of operation. Whereas a single 9403 is guaranteed to operate at 10MHz, an array of four FIFOs connected as shown is guaranteed to operate at 4 3MHz

Figure 5. Word Expansion

Figure 6. Bit Expansion

Signetics

HORIZONTAL AND VERTICAL EXPANSION

In addition to bit-or-word expansion, the 9403 can be used to expand in both the horizontal and vertical directions; a 31-word by 16-bit FIFO is shown in Figure 7. Using the same or similar techniques, any FIFO of 15m+1 words by 4n-bits can be constructed, where *m* is the number of devices in a column and *n* is the number of devices in a row.

The chart appended to Figure 7 shows the final positions for a contiguous serial entry of 496 bits. Figures 8 and 9, respectively, show the timing relationships involved for data-entry and data-retrieval pertaining to the 31-word by 16-bit array

Figure 7. Horizontal and Vertical Expansion-31X16 FIFO

Figure 9. Retrieval of Serial Data for Array of Figure 7

Signetics

Most conventional FIFO designs provide the status-signal counterparts of $\overline{\text{IRF}}$ and $\overline{\text{ORE}}$. However, when these devices are used in arrays, variations in unit-to-unit operating speeds

require the use of external gating to ensure that all devices have, in fact, completed the last operation. The 9403 incorporates simple but effective master/slave interlocking circuits to eliminate these gating requirements.

Figure 10. Functional Equivalent of Interlocking Circuits

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
Vcc	Power supply voltage	+7	Vdc
VIN	Input voltage	+55	Vdc
٧o	Off-state output voltage	+5.5	Vdc
TA	Operating temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS Over operating temperature range unless otherwise noted

			LIMITS			
	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Тур	Max	UNIT
VIH	Input high voltage	Guaranteed input high voltage	2.0			v
VIL	Input low voltage	Guaranteed input low voltage			0.8	v
VCD	Input Clamp Diode Voltage	$V_{CC} = Min, I_{IN} = -18mA$		-0.9	-1.5	v
VOH	Output high voltage, ORE, IRF	$V_{CC} = Min$, $I_{OH} = -400\mu A$	24	3.4		v
∨он	Output high voltage, Q0-Q3, QS	$I_{OH} = -5.7 \text{mA}, V_{CC} = \text{Min}$	2.4	3.1		v
VOL	Output low voltage, Q0-Q3; QS	$V_{CC} = Min, I_{OL} = 16mA$		0.35	0.5	v
VOL	Output low voltage, ORE, IRF	$V_{CC} = Min, I_{OL} = 8.0 mA$		0.35	0.5	v
IOZH	Output off current high, Q0-Q3, QS	$V_{CC} = Max$, $V_{OUT} = 2.4V$, $V_E = 2V$			100	μA
^I OZL	Output off current low, Q0-Q3, QS	$V_{CC} = Max$, $V_{OUT} = 0.5V$, $V_E = 2V$	1		- 100	μA
ЧH	Input high ourrest	$V_{CC} = Max, V_{IN} = 2.7V$		1.0	40	μA
	input nigh current	$V_{CC} = Max, V_{IN} = 5.5V$			1.0	mA
۱L	Input low current, all except OES &				-0.36	
	IES	V _{CC} = Max, V _{IN} = 0.4V			-0.96	mA
los	Output short circuit current, Q0-Q3, QS	V _{CC} = Max, V _{OUT} = 0, (Note 3)	-30		-130	mA
	ORE, OES		1			
lcc	Supply Current	V _{CC} Max, Inputs open		115	170	mA

NOTES

1 Operating temperature ranges are guaranteed after terminal equilibrium has been reached

2 All voltages measured with respect to ground terminal 3 No more than one output should be shorted at a time 9403

AC ELECTRICAL CHARACTERISTICS $~v_{CC}$ = 5.0V, c_L = 15pF, T_A = 25° C

DADAMETED		FROM	то	TEST CONDITIONE123	LIMITS			UNIT
	PARAMEIER	INPUT	OUTPUT	TEST CONDITIONS 1213	Min	Тур	Max	UNIT
FALL-THR ^t DFT		Positive going PL	Q ₀ .Q ₃	TTS connected to IRF, TOS connected to ORE, IES, OES, EO, CPSO low, TOP high (I, Fig. 11)		450	600	ns
PROPAGA	TION DELAY							ns
¹ PLH	Low-to-high	Negative going TTS	IRF	Stack not full, PL low		48	64	
[†] PHL	High-to-low	Negative going CPSI	IRF	(a & b, Fig. 11)		18	25	
¹ PLH ¹ PHL	Low-to-high High-to-low	Negative going CPSO	QS	Serial output OES low, TOP high (c & d, Fig. 11)		30 17	40 28	ns
¹ PHL	High-to-low	Negative going CPSO	ORE			32	42	ns
TPLH	Low-to-high			FO 0000 (a. 6. 6. 41)		40	56	ns
[†] PHL	High-to-low	Positive going TOP	u ₀ .u ₃	EO, CPSO 18W (e, Fig 11)		31	45	
toru	Low-to-high	Positive going TOP	ORE	Parallel output,		51	68	ns
1PHL	High-to-low	Negative going TOP	ORE	EO, CPSO low (e, Fig 11)	1	40	54	_
¹ PLH	Low-to-high	Negative going TOS	Positive going ORE	Data in stack, TOP high, (c & d, Fig. 11)		41	56	ns
[†] PHL	High-to-low	Positive going PL	Negative going IRF	Stack not full (g & h, Fig. 11)		20	33	ns
10111	Low-to-bigh	Negative going PL	Positive going IBE			33	46	0.5
1 PLH	Low-to-high	Positive going OES	ORE			26	44	
¹ PLH	Low-to-high	Positive going IES	Positive going IRF			31	40	}
	ELAY							ns
1PZH	High	EO	Q0-Q3				14	
¹ PZL	Low	-		Out of high		9	20	
IPZL	Low	Negative going OES	QS	impedance state		13	25	ns
PZH	High					1	- 20	
DISABLE	DELAY	-						ns
[†] PLZ	Low	EO	Q0.Q3	late high		7	14	
PHZ	High			impedance state				
^t PLZ ^t PHZ	Low High	Negative going OES	Q _S			7	14	ns
								05
IAP IAS	Parallel Serial	ORE	0 ₀ .0 ₃ 0 ₅	Time elapsed between ORE go- ing high and valid data appearing at output, negative number indi- cates data available before ORE goes high		- 12 6	-5 10	
PULSE W								0.5
^t PWL	CPSI low			Stack not full, PL low	20	11		
^t PWH	CPSI high			(a&b,Fig 11)	33	19	1	
							1	-
^t PWL ^t PWH	TOP low TOP high			CPSO low, data available in stack (e, Fig. 11)	30 26	17		ns
					20	10	1	
	CPSO low CPSO high			(c & d, Fig 11)	30	18		ns
^t РWH	PL high			Stack not full (g & h, Fig. 11)	40	29		ns
¹ PWL	TTS low (serial or parallel mode)			Stack not full (a, b, g, & h, Fig 11)	20	9		ns
[†] PWL				(f, Fig. 11)	25	13		ns
SETUP an	IN HOLD TIME							ns
ts	Setup time	Ds	Negative CPSI	PL low (a & b, Fig 11)	28	17		
^t h	Hold time	DS	CPSI		0	-6		

AC ELECTRICAL CHARACTERISTICS $v_{CC} = 5 \text{ ov}, C_L = 15 \text{pF}, T_A = 25^{\circ} \text{ C (Cont'd)}$

PARAMETER		EROM	то	TEST CONDITIONS123	LIMITS			114117
		FROM		TEST CONDITIONS	Min	Тур	Max	
ts	Setup time	Parallel inputs	PL	Length of time parallel inputs must be applied prior to rising edge of PL	0	-22		ns
th	Hold time	Parallel inputs	PL	Length of time parallel inputs must remain applied after falling edge of PL	2			ns
's	Set up time (serial or parallel mode)	TTS	IRF	(a, b, g, å h, Fig. 11)	0	-20		ns
t _s	Setup time	Negative going ORE	Negative going TOS	TOP high (c & d, Fig 11)	0	-24		٨s
1s 1 _S	Setup time Setup time	Negative going IES Negative TTS	CPSI CPSI	(b, Fig 11)	45 84	23 58		ns
RECOVERY TIME		MR	Any input	(f, Fig. 11)	15	5		ns

NOTES

1 Initialization requires a master reset to occur after power has been applied

3 If stack is full, IRF will stay low

2 TTS normally connected to IRF

Figure 11. 9403 Timing and Parameter-Measurement Information (Cont'd)

LOGIC DIAGRAM

