

93L09 Dual 4-Input Multiplexer

General Description

The 93L09 monolithic dual 4-input digital multiplexers consist of two multiplexing circuits with common input select logic. Each circuit contains four inputs and fully buffered complementary outputs. In addition to multiplexer operation, the 93L09 can generate any two functions of three variables. Active pullups in the outputs ensure high drive and high speed performance. Because of its high speed performance and on-chip select decoding, the 93L09 may be cascaded to multiple levels so that any number of lines can be multiplexed onto a single output bus.

Features

■ Multifunction capability

Logic Symbol

- On-chip select logic decoding
- Fully buffered complementary outputs

Connection Diagram

Zb — 1 16 — V_{CC} Zb — 2 15 — Za S1 — 3 14 — Za 10b — 4 13 — S0

Dual-In-Line Package

11b - 5 12 - 10a 12b - 6 11 - 11a 13b - 7 10 - 12a GND - 8 9 - 13a

TL/F/9602-1

Order Number 93L09DMQB or 93L09FMQB See NS Package Number J16A or W16A

	12 11	10 9	4 5 	6 7 	
	10a 11a	12a 13a	10b 11b	12b 13b	1
13 \$0					
3 — S1					
	Za	Za	Zb	Zb	
	P		9		
	14	15	2	1	
					TL/F/9602-2
			Pin 16		

Pin Names	Description
S0, S1	Common Select Inputs
10a-13a	Multiplexer A Inputs
Za	Multiplexer A Output
Za	Complementary Multiplexer A Output
10b-13b	Multiplexer B Inputs
Zb	Multiplexer B Output
Z̄b	Complementary Multiplexer B Output

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 5.5V

Operating Free Air Temperature Range

MIL -55°C to +125°C

Storage Temperature Range -65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Units		
Cymbol	T arameter	Min	Nom	Max	Gillis
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.7	V
Іон	High Level Output Current			-400	μΑ
I _{OL}	Low Level Output Current			4.8	mA
TA	Free Air Operating Temperature	-55		125	.c

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, II = -10 \text{ mA}$			-1.5	٧
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max, V_{IH} = Min$	2.4			٧
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min, V_{IL} = Max$			0.3	٧
11	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$			20	μА
IIL	Low Level Input Current	$V_{CC} = Max, V_1 = 0.3V$			-400	μА
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-10		-40	mA
Icc	Supply Current	V _{CC} = Max			11.5	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$

Symbol	Parameter	C _L =	Units	
	T di dinicici	Min	Max	Omis
t _{PLH} t _{PHL}	Propagation Delay S_0 to Z_a		70 60	ns
t _{PLH} t _{PHL}	Propagation Delay S_0 to \overline{Z}_a		55 50	ns
t _{PLH} t _{PHL}	Propagation Delay I ₀ to Z _a		70 65	ns
t _{PLH}	Propagation Delay S_0 to \overline{Z}_a		40 60	ns

Functional Description

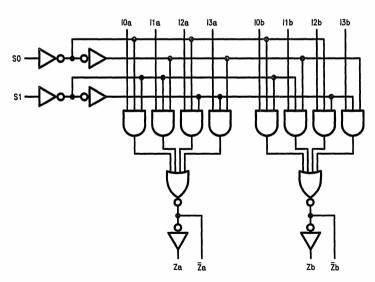
The 93L09 dual 4-input multiplexers are able to select two bits of either HIGH or LOW data or control from up to four sources, in one package. The 93L09 is the logical implementation of two-pole, four-position switch, with the position of the switch being set by the logic levels supplied to the two select inputs. Both assertion and negation outputs are provided for both multiplexers. The logic equations for the outputs are shown below:

$$Za = 10a \bullet \overline{S}1 \bullet \overline{S}0 + 11a \bullet \overline{S}1 \bullet S0 + 12a \bullet S1 \bullet \overline{S}0 + 13a \bullet S1 \bullet S0$$

$$Zb = 10b \bullet \overline{S}1 \bullet \overline{S}0 + 11b \bullet \overline{S}1 \bullet S0 + 12a \bullet S1 \bullet \overline{S}0 + 13b \bullet S1 \bullet S0$$

The 93L09 is frequently used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the select inputs. A less obvious application is as a function generator. The 93L09 can generate two functions of three variables. This is useful for implementing random gating functions.

Truth Table


Sel Inp	ect uts	Inputs (a or b)			Outputs (a or b)		
S0	S1	10	11	12	13	Z	Z
L	L	L	Х	Х	Х	L	Н
L	L	Н	Х	Χ	Х	Н	Ł
Н	L	Х	L	Χ	Х	L	Н
Н	L	Х	Н	Х	Х	Н	L
L	Н	Х	Х	L	Х	L	Н
L	Н	Х	Χ	Н	Χ	Н	L
Н	Н	Х	Χ	Χ	L	L	Н
Н	Н	Х	Χ	Χ	Н	Н	L

H = HIGH voltage level

L = LOW voltage level

X = Immaterial

Logic Diagram

TL/F/9602-3