National Semiconductor

9322/DM9322 Quad 2-Line to 1-Line Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. True data is presented at the outputs.

Features

- Pin-for-pin with popular DM54157/74157
- Buffered inputs and outputs

Connection Diagram

Applications

- Expand any data input point
- Multiplex dual-data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters
- Alternate Military/Aerospace device (9322) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

TL/F/6608-1

Order Number 9322DMQB, 9322FMQB, DM9322J, DM9322W or DM8322N See NS Package Number J16A, N16E or W16A

Function Table

	Inputs			
Strobe	Select	A	В	Y
н	х	х	х	L
L	L	L	х	L
L	L	н	х	н
L	н	х	L	L
L	н	x	н	н

H = High Level, L = Low Level, X = Don't Care.

9322

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
Military	-55°C to +125°C
Commercial	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Unite
		Min	Nom	Max	Min	Nom	Max	Cinto
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2			v
VIL	Low Level Input Voltage			0.8			0.8	v
I _{OH}	High Level Output Current			-0.8			-0.8	mA
IOL	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	- 55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condit	ions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	= 12 mA			-1.5	v
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		v
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL}$	_ = Max = Max		0.2	0.4	v
ų	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 5.5V$				1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$				40	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-1.6	mA
los	Short Circuit	V _{CC} = Max	MIL	-20		-55	m۸
	Output Current	(Note 2)	СОМ	- 18		-55	
Icc	Supply Current	V _{CC} = Max (No	ote 3)		30	48	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: ICC is measured with 4.5V applied to all inputs and all outputs open.

2	Г
Ŝ.	Т
က	1
ത	

Symbol	Paramotor	From (Input)	$R_L = 400\Omega$,	C _L = 15 pF	Units
	T al allietes	To (Output)	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Output		14	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Output		14	ns
^t PLH	Propagation Delay Time Low to High Level Output	Strobe to Output		20	ns
^t PHL	Propagation Delay Time High to Low Level Output	Strobe to Output		21	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Output		23	ns
tPHL	Propagation Delay Time High to Low Level Output	Select to Output		27	ns

Logic Diagram

TL/F/6608-2

٦