1024x1 BIT BIPOLAR RAM | 82S10 OPEN COLLECTOR (82S10) TRI-STATE (8211) ## **FEBURARY 1975** DIGITAL 8000 SERIES TTL/MEMORY #### DESCRIPTION The 82S10/11 is a high speed 1024-bit random access memory organized as 1024 words X 1 bit. With a typical access time of 30ns, it is ideal for cache buffer applications and for systems requiring very high speed main memory. Both the 82S10 and 82S11 require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations. Both 82S10 and 82S11 devices are available in the commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N82S10/11, I. For the military temperature range $(-55^{\circ}C)$ to +125°C) specify S82S10/11, I. #### **FEATURES** - ORGANIZATION 1024 X 1 - ADDRESS ACCESS TIME: S82S10/11 - 70ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM WRITE CYCLE TIME: S82S10/11 - 75ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM - POWER DISSIPATION 0.5mW/BIT, TYPICAL - INPUT LOADING: $$82$10/11 - (-150\mu A) MAXIMUM$ $N82S10/11 - (-100\mu A) MAXIMUM$ - ON-CHIP ADDRESS DECODING - OUTPUT OPTIONS: 82S10 - OPEN COLLECTOR 82S11 - TRI-STATE - NON-INVERTING OUTPUT - BLANKED OUTPUT DURING WRITE - 16 PIN CERAMIC PACKAGE #### **APPLICATIONS** **HIGH SPEED MAIN FRAME CACHE MEMORY BUFFER STORAGE** WRITABLE CONTROL STORE #### PIN CONFIGURATION #### **TRUTH TABLE** | MODE | CE | WE | DIN | DOUT | | |-----------|----|----|-------|--------|--------| | | | | - 114 | 82\$10 | 82S11 | | READ | 0 | 1 | Х | STORED | STORED | | | | | | DATA | DATA | | WRITE "0" | 0 | 0 | 0 | 1 | High-Z | | WRITE "1" | 0 | 0 | 1 | 1 | High-Z | | DISABLED | 1 | Х | Х | 1 | High-Z | X = Don't care. #### **BLOCK DIAGRAM** #### **ABSOLUTE MAXIMUM RATINGS** | | PARAMETER ¹ | RATING | UNIT | |------------------|---|-----------------------------|----------| | V _{CC} | Power Supply Voltage | +7 | Vdc | | V _{in} | Input Voltage | +5.5 | Vdc | | Voh | High Level Output Voltage (82S10) | +5.5 | Vdc | | Vo | Off-State Output Voltage (82S11) | +5.5 | Vdc | | TA | Operating Temperature Range
(N82S10/11)
(S82S10/11) | 0° to +75°
-55° to +125° | °c
°c | | T _{stg} | Storage Temperature Range | -65° to +150° | °C | ### **ELECTRICAL CHARACTERISTICS9** S82S10/11 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5 N82S10/11 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25 | VIL Low Level Input Voltage VCC = MIN (Note 1) 2.1 | LINUT | |---|----------------| | V _{IH} High Level Input Voltage V _{CC} = MAX (Note 1) 2.1 2.1 V _{IC} Input Clamp Voltage V _{CC} = MIN, I _{IN} = -12mA (Note 1, 7) -1.0 -1.5 -1.0 -1.5 V _{OL} Low Level Output Voltage V _{CC} = MIN, I _{OL} = 16mA (Note 1, 8) 0.35 0.50 0.35 0.45 V _{OH} High Level Output Voltage (82S11) V _{CC} = MIN, I _{OH} = -2mA (Note 1, 5) 2.4 <td< th=""><th>UNIT</th></td<> | UNIT | | V _{IC} Input Clamp Voltage V _{CC} = MIN, I _{IN} = -12mA (Note 1, 7) -1.0 -1.5 -1.0 -1.5 V _{OL} Low Level Output Voltage V _{CC} = MIN, I _{OL} = 16mA (Note 1, 8) 0.35 0.50 0.35 0.45 V _{OH} High Level Output Voltage (82S11) V _{CC} = MIN, I _{OH} = -2mA (Note 1, 5) 2.4 2.4 2.4 I _{OLK} Output Leakage Current (82S10) V _{CC} = MAX, V _{OUT} = 5.5V (Note 6) 1 60 1 40 I _{O(OFF)} Hi-Z State Output Current (82S11) V _{CC} = MAX, V _{OUT} = 5.5V (Note 6) 1 100 1 60 I _{IL} Low Level Input Current V _{IN} = 0.45V -10 -150 -10 -100 I _{IH} High Level Input Current V _{IN} = 5.5V 1 40 1 25 I _{OS} Short Circuit Output V _{CC} = MAX, V _{OUT} = 0V -20 -100 -20 -100 | V | | VOL Low Level Output Voltage (Note 1, 7) VOH High Level Output Voltage (82S11) VCC = MIN, IOH = -2mA (Note 1, 5) 2.4 IOLK Output Leakage Current (82S10) VCC = MAX, VOUT = 5.5V (Note 6) 1 60 1 40 IO(OFF) Hi-Z State Output Current (82S11) VCC = MAX, VOUT = 5.5V (Note 6) 1 100 1 60 IIL Low Level Input Current | V | | Voh | V | | Voltage (82S11) IOLK Output Leakage Current (82S10) VCC = MAX, VOUT = 5.5V (Note 6) 1 60 1 40 IO(OFF) Hi-Z State Output Current (82S11) VCC = MAX, VOUT = 5.5V (Note 6) 1 100 1 60 1 60 IIL Low Level Input Current VIN = 0.45V (Note 6) -10 -150 1 70 -10 -100 IIH High Level Input Current VIN = 5.5V 1 40 1 40 1 25 IOS Short Circuit Output VCC = MAX, VOUT = 0V 720 70 -20 7100 720 70 | V | | | V | | Current (82S11) $V_{CC} = MAX, V_{OUT} = 0.45V$ -1 -100 -1 -60 I_{IL} Low Level Input Current $V_{IN} = 0.45V$ -10 -150 -10 -100 | μΑ | | I_{1H} High Level Input Current $V_{1N} = 5.5V$ 1 40 1 25 1 1 1 1 1 1 1 1 1 1 | μA
μA | | I_{OS} Short Circuit Output $V_{CC} = MAX, V_{OUT} = 0V$ -20 -100 -20 -100 | μΑ | | | μΑ | | | mA | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | mA
mA
mA | | C_{1N} Input Capacitance $V_{CC} = 5.0V$, $V_{1N} = 2.0V$ 4 | pF | | C _{OUT} Output Capacitance V _{CC} = 5.0V, V _{OUT} = 2.0V 7 | pF | #### NOTES: - 1. All voltage values are with respect to network ground terminal. - 2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. - 3. Duration of the short-circuit should not exceed one second. - 4. I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open. - 5. Measured with VIL applied to CE and a logic "1" stored. - 6. Measured with V_{1H} applied to CE. - 7. Test each input one at the time. - 8. Measured with a logic "0" stored. Output sink current is supplied through a resistor to V_{CC} . - 9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are: - $\phi_{ m JA}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt - ϕ_{JA} Junction to Ambient still air 90° C/Watt - $\phi_{ m JA}$ Junction to Case 20 $^{ m o}$ C/Watt ## SWITCHING CHARACTERISTICS³ S82S10/11 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5 N82S10/11 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25 | | DADAMETED | TEST COMPLETIONS | S82S10/11 | | | N82S10/11 | | | | |--------------------|--|--|-----------|------------------|-----|-----------|------------------|-----|------| | | PARAMETER | TEST CONDITIONS | MIN | TYP ¹ | MAX | MIN | TYP ¹ | MAX | UNIT | | Propaga | ation Delays | | | | | | | | | | TAA | Address Access Time | | | 30 | 70 | | 30 | 45 | ns | | T_{CE} | Chip Enable Access Time | | | 15 | 45 | | 15 | 30 | ns | | T_{CD} | Chip Enable Output Disable
Time | | | 15 | 45 | | 15 | 30 | ns | | T_{WD} | Write Enable to Output
Disable Time | | | 20 | 45 | | 20 | 30 | ns | | T_{WR} | Write Recovery Time | | | 20 | 45 | | 20 | 30 | ns | | Write Set-up Times | | C _L = 30pF |) | | | | | | | | T _{WSA} | Address to Write Enable | $R_1 = 270\Omega$
$R_2 = 600\Omega$ | 15 | 0 | | 5 | 0 | | ns | | T_{WSD} | Data In to Write Enable | | 55 | 35 | | 40 | 35 | | ns | | T_{WSC} | CE to Write Enable | | 5 | 0 | | 5 | 0 | | ns | | Write F | Iold Times | | | | | | | | | | T _{WHA} | Address to Write Enable | | 10 | 0 | | 5 | 0 | | ns | | T _{WHD} | Data In to Write Enable | | 5 | 0 | | 5 | 0 | | ns | | T_{WHC} | CE to Write Enable | | 5 | 0 | | 5 | 0 | | ns | | T_{WP} | Write Enable Pulse Width (Note 2) | | 50 | 25 | | 35 | 25 | | ns | #### **AC TEST LOAD** - 1. Typical values are at V_{CC} = +5.0V, and T_A = +25° C. 2. Minimum required to guarantee a WRITE into the slowest bit. - 3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are: - $heta_{ m JA}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt - $\theta_{\rm JA}$ Junction to Ambient still air 90° C/Watt $\theta_{\rm JA}$ Junction to Case 20° C/Watt ### SWITCHING PARAMETERS MEASUREMENT INFORMATION ### **CHIP ENABLE/DISABLE TIMES** ### **WRITE CYCLE** #### **MEMORY TIMING DEFINITIONS** | T _{WR} | Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid—not as shown.) | | Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA. | | | | | |------------------|--|------------------|---|--|--|--|--| | | | | Width of WRITE ENABLE pulse. | | | | | | T _{CE} | Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT | T _{WSA} | Required delay between beginning of valid ADD-RESS and beginning of WRITE ENABLE pulse. | | | | | | | becomes valid. | | Required delay between beginning of valid DATA | | | | | | T _{CD} | | | INPUT and end of WRITE ENABLE pulse. | | | | | | | and DATA OUTPUT is in off state. | T_{WD} | Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state. | | | | | | TAA | Delay between beginning of valid ADDRESS (with | | | | | | | | - | CHIP ENABLE low) and when DATA OUTPUT becomes valid. | | Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE. | | | | | | T _{WSC} | Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse. | T _{WHA} | Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS. | | | | |