82S10/110-F.N • 82S11/111-F.N

DESCRIPTION

The 82S10/11, with a typical access time of 30ns, is ideal for cache buffer applications and for systems requiring very high speed main memory.

The 82S10/11 family requires single +5V power supply and features very low current pnp input structures. They include on-chip decoding and a chip enable input for ease of memory expansion, and feature either open collector or tri-state outputs for optimization of word expansion in bused organizations.

All devices are available in the commercial temperature range (0° C to +75° C) and are specified as N82S10/110/11/111. The 82S10 and 82S11 are also available in the military temperature range (-55° C to +125° C) and are specified as S82S10/11.

FEATURES

- Address access time: N82S10/11: 45ns max S82S10/11: 70ns max
- N82S110/111: 35ns max

 Write cycle time:
 N82S10/11: 45ns max
 S82S10/11: 75ns max
 N82S110/11: 40ns max
- Power dissipation: 0.5W/bit typ
- Input loading:

N82S10/11: -250μA max S82S10/11: -250μA max N82S110/111: -250μA max

- Output options:
 82S10/110: Open collector
- 82S11/111: Tri-state
 On-chip address decoding
- Non-inverting output
- · Blanked output during Write
- Fully TTL compatible

APPLICATIONS

- High speed main frame
- Cache memory
- Buffer storage
- Writable control store

PIN CONFIGURATION

TRUTH TABLE

CE	WE		POUT					
CE WE		D	82\$10/110	82S11/111				
0	1	×	Stored data	Stored data				
0	0	0	1	High-Z				
0	0	1 1	1	High-Z				
1	x	x	1	High-Z				
	0	0 1 0 0 0 0	0 1 X 0 0 0 0 0 0 1	0 1 X Stored data 0 0 0 1 1 0 1 1				

X = Don't care.

BLOCK DIAGRAM

82S10/110-F,N • 82S11/111-F,N

ABSOLUTE MAXIMUM RATINGS

	PARAMETER1	RATING	UNIT
Vcc Vin	Supply voltage Input voltage	+7 +5.5	Vdc Vdc
V _{OH} V _O	Output voltage High (82S10/110) Off-state (82S11/111)	+5.5 +5.5	Vdc
TA	Temperature range Operating N82S10/11/110/111 S82S10/11	0 to +75 -55 to +125	°C
T _{STG}	Storage	-65 to +150	

DC ELECTRICAL CHARACTERISTICS2 N82S10/110/11/111: $0^{\circ}C \le T_{A} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$ S82S10/11: $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, $4.5V \le V_{CC} \le 5.5V$

	DADAMETED	TEAT CONDITIONS	N82S10/11/110/111						
PARAMETER		TEST CONDITIONS	Min	Тур3	Max	Min	Тур3	Max	UNIT
V _{IL} V _{IH}	Input voltage Low ¹ High ¹	V _{CC} = Min V _{CC} = Max	2.1		.85	2.1		.80	v
ViC	Clamp ^{1,4}	$V_{CC} = Min, I_{IN} = -12mA$		-1.0	-1.5		-1.0	-1.5	
Vol Voh	Output voltage Low1.5 High (82S11/111)1.6	V _{CC} = Min I _{OL} = 16mA I _{OH} = -2mA	2.4	0.35	0.45	2.4	0.35	0.50	V
hL hH	Input current Low High	V _{IN} = 0.45V V _{IN} = 5.5V		-10 1	-250 25		-10 1	-250 40	μА
IOLK IO(OFF)	Output current Leakage (82S10/110)7 Hi-Z state (82S11/111) Short circuit (82S11/111)8	V _{CC} = Max V _{OUT} = 5.5V V _{OUT} = 5.5V V _{OUT} = 0.45V ⁷ V _{OUT} = 0V	-20	1 1 -1	40 60 -60 -100	-20	1 1 -1	60 100 -100 -100	μΑ μΑ mA
lcc	V _{CC} supply current ⁹	V _{CC} = Max 0 < T _A < 25° C T _A ≥ 25° C T _A ≤ 0° C		120 95	155 130 170		120 95	155 130 170	mA
Cin Cout	Capacitance Input Output	V _{CC} = 5.0V V _{IN} = 2.0V V _{OUT} = 2.0V		7			4		pF

82S10/110-F,N • 82S11/111-F,N

AC ELECTRICAL CHARACTERISTICS² $R_1 = 270\Omega, R_2 = 600\Omega, C_L = 30pF$

N82S10/110/11/111: $0^{\circ}C \le T_{A} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

S82S10/11: -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5V

PARAMETER	TO FROM	N82S10/11		N82S110/111			S82S10/11			UNIT		
		Min	Typ ³	Max	Min	Тур	Max	Min	Тур3	Max		
Access time TAA Address TCE Chip enable				30 15	45 30			35 25		30 15	70 45	ns
Disable time TCD TWD	Output Output	Chip enable Write enable		15 20	30 30	- 0)	-3	25 25		15 20	45 45	ns
Twn Write recovery time				20	30			25		20	45	ns
Setup and hold time Twsa Setup time Twha Hold time	Write enable	Address	5 5	0		5 10			15 10	0		ns
Twsp Setup time Twho Hold time	Write enable	Data in	40 5	30 0		30 5			55 5	35 0		
Twsc Setup time Twhc Hold time	Write enable	CE	5	0		5			5	0		
Pulse width Twp Write enable ¹⁰			35	25		25			50	25		ns

NOTES

- 1. All voltage values are with respect to network ground terminal.
- 2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400

linear feet per minute and a 2-minute warm-up.

- Typical thermal resistance values of the package at maximum temperature are:
- θ_{JA} junction to ambient at 400fpm air flow 50° C/watt
- OJA junction to ambient still air 90° C/watt
- Θ_{JA} junction to case 20° C/watt
- 3. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 4. Test each input one at a time.
- 5. Measured with a logic low stored. Output sink current is supplied through a resistor to Vcc.
- 6. Measured with VIL applied to CE and a logic high stored.
- 7. Measured with VIH applied to CE.
- 8. Duration of the short circuit should not exceed 1 second.
- 9. Icc is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V,
- 10. Minimum required to guarantee a Write into the slowest bit.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

82S10/110-F,N • 82S11/111-F,N

TIMING DIAGRAMS

MEMORY TIMING DEFINITIONS

- Twr Delay between end of Write Enable pulse and when Data Output becomes valid. (Assuming Address still valid—not as shown.)
- TCE Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes
- T_{CD} Delay between when Chip Enable becomes high and Data Output is in off state.
- TAA Delay between beginning of valid Address (with Chip Enable low) and when Data Output becomes valid.
- Twsc Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
- TWHD Required delay between end of Write Enable pulse and end of valid Input Data.
- Twp Width of Write Enable pulse.

 Required delay between beginning of valid Address and begin-
- ning of Write Enable pulse.

 Twsp Required delay between beginning of valid Data Input and end of Write Enable pulse.
- TwD Delay between beginning of Write Enable pulse and when Data Output is in off state.
- TWHC Required delay between end of Write Enable pulse and end of Chip Enable.
- TWHA Required delay between end of Write Enable pulse and end of valid Address.