
DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8261 Fast Carry Extender is a monolithic gate array designed specifically to be used in conjunction with the 8260 Arithmetic Logic element. A 8260/8261 combination facilitates the implementation of the look-ahead technique in adder systems, thus considerably improving propagation times. The circuit structure of this array is of the familiar TTL type.

LOGIC DIAGRAM

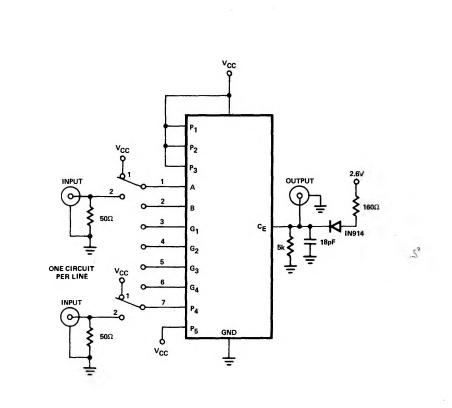
ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

	LIMITE					TEST CO		NOTES		
CHARACTERISTICS		LIMITS				DRIVEN INPUTS			OTHER INPUTS	
	MIN.	TYP.	MAX.	UNITS	G,A,B	Р	G,A,B	Р]	
"1" Output Voltage	2.6	3.5		V	2.0V				-800μA	6
"0" Output Voltage			0.4	l v	0.8V		4.75V	4.75V	9.6mA	7
"1" Input Current										
G Input			40	μА	4.5V	}	A = 0V			
A and B Inputs		1	40	μА	4.5V		G1 = 0V			
P ₁ Input			40	μА		4.5V		0V		
P ₂ Input			80	μΑ		4.5V		0V		
P ₃ Input			120	μА		4.5V		0٧		
P ₄ and P ₅ Inputs			160	μΑ		4.5V		0 V		
"0" Input Current				ļ					1	
G, A and B			-1.6	mA	0.4V			5.25V		
P ₁ Input			-1.6	mA		0.4V	0V	5.25V		
P ₂ Input			-3.2	mA		0.4V	0V	5.25V	Į.	
P ₃ Input	1		-4.8	mA		0.4V	0V	5.25 V		
P ₄ and P ₅ Inputs			-6.4	mA		0.4V	0٧	5.25V	5	
Power/Current Consumption		95/18.1	140/26.6	mW/mA			5.25V	0V	1.3	12
Input Latch Voltage	5.5	1		V	10mA	10mA	0V	0V		9

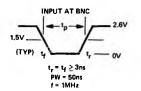
 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

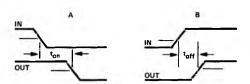
CHARACTERISTICS					TEST CONDITIONS					
		LIMITS				DRIVEN INPUTS		OTHER INPUTS		NOTES
	MIN.	TYP.	MAX.	UNITS	G,A,B	Р	G,A,B	P	1	
Turn-on Delay										
G to CE		12	18	ns						8
P to CE		9	14	ns	ļ		ı		1	8
Turn-off Delay				İ						
G to CE		11	16	ns						8
P to CE		8	12	ns						8
Output Short Circuit										
Current	-20		-70	mA	5.0V	ov			ov	

SIGNETICS DIGITAL 8000 SERIES TTL/MSI - 8261


NOTES:

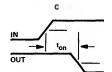
- 1. All voltage and current measurements are referenced to the ground terminal. Input terminals not specifically referenced are tied to V_{CC} . All measurements are taken with ground pin tied to zero
- 2. volts.
- 3. Positive current flow is defined as into the terminal referenced.
- Positive logic definition: 4.
 - "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- 6. Output source current is supplied through a resistor to ground.
- Output sink current is supplied through a resistor to V_{CC}. 7.
- Refer to AC Test Figure. 8.
- This test guarantees operation free of input latch-up over the 9. specified operating power supply voltage range.
- 10. Manufacturer reserves the right to make design and process changes and improvements.
- Input "0" thresholds for P_1 through P_5 inputs are guaranteed to be 0.7 volts.
- V_{CC} = 5.25V. 12.

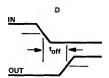

SCHEMATIC DIAGRAM



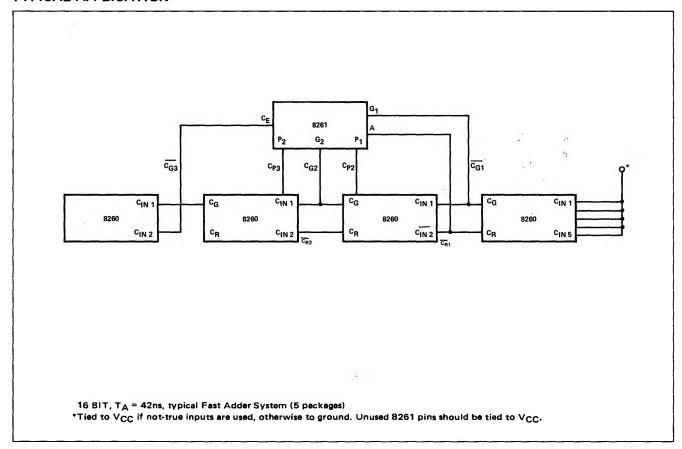
AC TEST FIGURE AND WAVEFORMS

SWITCH NO.		WI.	TCF	H PC	WAVEFORM			
PIN DES.	1	2	3	4	5	6	7	TYPE
Α	2	1	1	1	1	1	1	
В	1	2	1	1	1	1	1	
G ₁	1	1	2	1	1	1	1	
G ₂	1	1	1	2	1	1	1	A and B
G ₃	1	1	1	1	2	1	1	
G ₄	1	1	1	1	1	2	1	
P ₄								
STEP A	2	1	1	1	1	1	2	
STEP B	1	2	1	1	1	1	2	
STEPC	1	1	2	1	1	1	2	
STEP D	1	1	1	2	1	1	2	C and D
STEPE	1	1	1	1	2	1	2	
STEPF	1	1	1	1	1	2	2	





NOTES:


- Scope terminals to be ≤ 1-1/2" from package pins.
 Position 1 on all switches provides a logical "1".
- Position 2 on all switches provides a logical "0" when input signal is not present.

 3. All measurements are made at 1.5 volts level.

TYPICAL APPLICATION

