Silicon Gate MOS 8257 ## PROGRAMMABLE DMA CONTROLLER - Four Channel DMA Controller - Priority DMA Request Logic - Channel Inhibit Logic - Terminal and Modulo 256/128 Outputs - Auto Load Mode - Single TTL Clock (\$\phi_2\$/TTL) - Single +5V Supply - Expandable - 40 Pin Dual-in-Line Package The 8257 is a Direct Memory Access (DMA) Chip which has four channels for use in 8080 microcomputer systems. Its primary function is to generate, upon a peripheral request, a sequential memory address which will allow the peripheral to access or deposit data directly from or to memory. It uses the Hold feature of the 8080 to acquire the system bus. It also keeps count of the number of DMA cycles for each channel and notifies the peripheral when a programmable terminal count has been reached. Other features that it has are two mode priority logic to resolve the request among the four channels, programmable channel inhibit logic, an early write pulse option, a modulo 256/128 Mark output for sectored data transfers, an automatic load mode, a terminal count status register, and control signal timing generation during DMA cycles. There are three types of DMA cycles: Read DMA Cycle, Write DMA Cycle and Verify DMA Cycle. The 8257 is a 40-pin, N-channel MOS chip which uses a single +5V supply and the ϕ 2 (TTL) clock of the 8080 system. It is designed to work in conjunction with a single 8212 8-bit, three-state latch chip. Multiple DMA chips can be used to expand the number of channels with the aid of the 8214 Priority Interrupt Chip. ## 8257 PRELIMINARY FUNCTIONAL DESCRIPTION The transfer of data between a mass storage device such as a floppy disk or mag cassette and system RAM memory is often limited by the speed of the microprocessor. Removing the processor during such a transfer and letting an auxillary device manage the transfer in a more efficient manner would greatly improve the speed and make mass storage devices more attractive, even to the small system designer. The transfer technique is called DMA (Direct Memory Access); in essence the CPU is idled so that it no longer has control of the system bus and a DMA controller takes over to manage the transfer. The 8257 Programmable DMA Controller is a single chip, four channel device that can efficiently manage DMA activities. Each channel is assigned a priority level so that if multi-DMA activities are required each mass storage device can be serviced, based on its importance in the system. In operation, a request is made from a peripheral device for access to the system bus. After its priority is accepted a HOLD command is ussued to the CPU, the CPU issues a HLDA and that DMA channel has complete control of the system bus. Transfers can be made in blocks, suspending the processors operation during the entire transfer or, the transfer can be made a few bytes at a time, hidden in the execution states of each instruction cycle, (cycle-stealing). The modes and priority resolving are maintained by the system software as well as initializing each channel as to the starting address and length of transfer. The system interface is similar to the other peripherals of the MCS-80 but an additional 8212 is necessary to control the entire address bus. A special control signal BUSEN is connected directly to the 8228 so that the data bus and control bus will be released at the proper time. System Interface 8257.