2048-BIT BIPOLAR ROM (256x8 PROM) | **825114** 4096-BIT BIPOLAR ROM (512x8 PROM)

82S115

DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

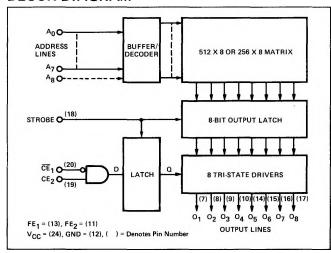
The 82S114 and 82S115 are Schottky-clamped Read Only Memories, incorporating on-chip data output registers. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S114 and 82S115 are supplied with all outputs at logical "0". Outputs are programmed to a logic "1" level at any specified address by fusing a Ni-Cr link matrix.

The 82S114 and 82S115 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature Tri-State outputs for optimization of word expansion in bussed organizations. A D-type latch is used to enable the Tri-State output drivers. In the TRANSPARENT READ mode, stored data is addressed by applying a binary code to the address inputs while holding STROBE high. In this mode the bit drivers will be controlled solely by CE1 and CE2 lines. In the LATCHED READ mode, after the desired address is applied and both CE1 and CE2 are enabled, data will enter the output latches following the positive transition of STROBE, and the data out lines will be locked into their last valid state following the negative transition of STROBE. The latches will remain set and the outputs enabled until the chip is disabled and STROBE is brought high.

Both 82S114 and 82S115 devices are available in the commercial temperature range. For the commercial temperature range, $(0^{\circ}\text{C to} + 75^{\circ}\text{C})$ specify N82S114/115, I.

FEATURES

- ORGANIZATION:
 - 82S114 256 X 8 82S115 - 512 X 8
- ADDRESS ACCESS TIME 60ns, MAXIMUM
- POWER DISSIPATION 165μW/BIT, TYPICAL
- INPUT LOADING (-100μA), MAXIMUM
- ON-CHIP ADDRESS DECODING
- ON-CHIP STORAGE LATCHES
- TRI-STATE OUTPUTS
- **FAST PROGRAMMING 5 SEC., MAXIMUM**
- PIN COMPATIBLE TO N8204/N8205 ROMs


APPLICATIONS

MICROPROGRAMMING HARDWIRE ALGORITHMS **CHARACTER GENERATION CONTROL STORE** SEQUENTIAL CONTROLLERS

PIN CONFIGURATION

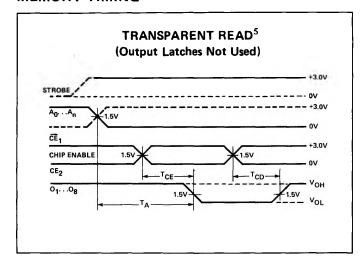
BLOCK DIAGRAM

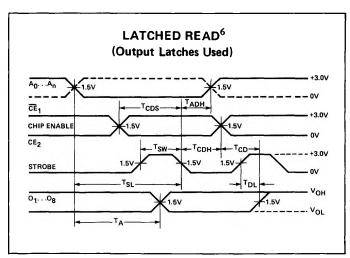
ABSOLUTE MAXIMUM RATINGS

_	PARAMETER	RATING	UNIT
Vcc	Power Supply Voltage	+7	Vdc
VIN	Input Voltage	+5.5	Vdc
V _o	Off-State Output Voltage	+5.5	Vdc
TA	Operating Temperature Range	0° to +75°	°C
T _{stg}	Storage Temperature Range	-65° to +150°	°C

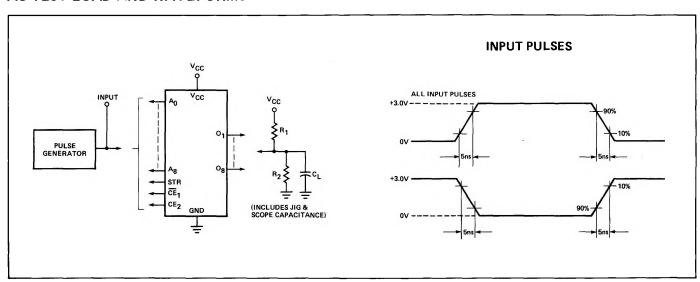
ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_{A} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25$

DADAMETED			LIMITS1			
	PARAMETER	TEST CONDITIONS	MIN	TYP ²	MAX	UNIT
I _{IL}	"0" Input Current	V _{IN} = 0.45V			-100	μΑ
I _{IH}	"1" Input Current	V _{IN} = 5.5V			25	μΑ
V_{IL}	"O" Level Input Voltage				.85	V
V_{IH}	"1" Level Input Voltage		2.0			V
V_{IC}	Input Clamp Voltage	I _{IN} = -18 mA		-0,8	- 1.2	V
V_{OL}	"0" Output Voltage	I _{OUT} = 9.6 mA			0.5	V
V _{OH}	"1" Output Voltage	CE ₁ = "0", CE ₂ = "1", I _{OUT} = -2 mA, "1" STORED	2.7	3.3		V
lo(OFF)	HI-Z State Output Current	\overline{CE}_1 = "1" or CE_2 = 0, V_{OUT} = 5.5V \overline{CE}_1 = "1" or CE_2 = 0, V_{OUT} = 0.5V			40 -40	μΑ μΑ
CIN	Input Capacitance	V _{CC} = 5.0V, V _{IN} = 2.0V		5		pF
C _{OUT}	Output Capacitance	$\frac{V_{CC}}{CE_1} = 5.0V, V_{OUT} = 2.0V$		8		pF
I_{CC}	V _{CC} Supply Current			135	185	m A
Ios	Output Short Circuit Current	V _{OUT} = 0V (Note 3)	-20		-70	mA

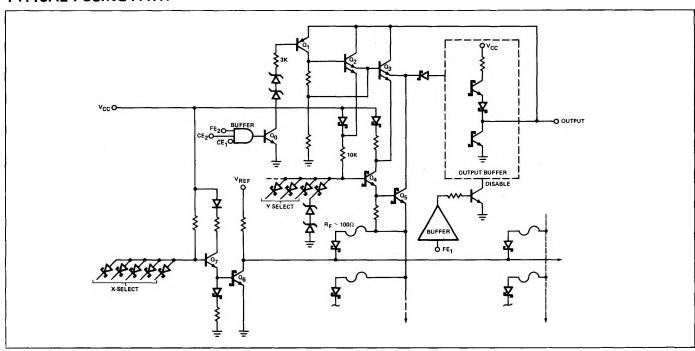

SWITCHING CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C$, $4.75V \leqslant V_{CC} \leqslant 5.25V$


DADAMETED			LIMITS				
	PARAMETER	TEST CONDITIONS	MIN	TYP ²	MAX	UNIT	
TAA	Address Access Time	LATCHED or TRANSPARENT READ		35	60	ns	
T _{CE}	Chip Enable Access Time	$R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$		20	40	ns	
T_{CD}	Chip Disable Time	(Note 4)		20	40	ns	
T _{ADH}	Address Hold Time		• 0	-10		ns	
T_{CDH}	Chip Enable Hold Time		10	0		ns	
T_{SW}	Strobe Pulse Width	LATCHED READ ONLY	30	20		ns	
T_{SL}	Strobe Latch Time	$R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$	60	35		ns	
T_DL	Strobe Delatch Time	(Note 5)			30	ns	
T _{CDS}	Chip Enable Set-up Time		40			ns	

NOTES


- 1. Positive current is defined as into the terminal referenced.
- 2. Typical values are at V_{CC} = +5.0V and T_A = +25°C.
- 3. No more than one output should be grounded at the same time and strobe should be disabled. Strobe is in "1" state.
- 4. If the strobe is high, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear TA nanoseconds after the address has changed and TCE nanoseconds after the output circuit is enabled. TCD is the time required to disable the output and switch it to an "off" or high impedance state after it has been enabled.
- 5. In Latched Read Mode data from any selected address will be held on the output when strobe is lowered. Only when strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.

MEMORY TIMING



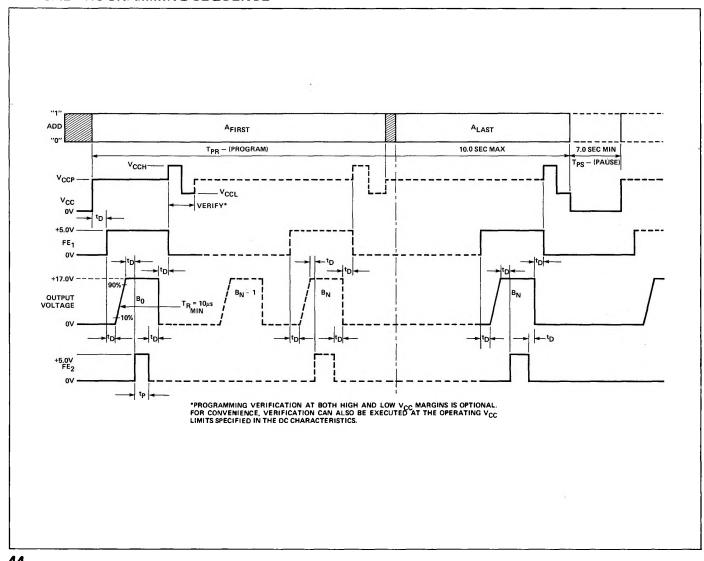
AC TEST LOAD AND WAVEFORMS

TYPICAL FUSING PATH

RECOMMENDED PROGRAMMING PROCEDURE

The 82S114/115 are shipped with all bits at logical "0" (low). To write logical "1", proceed as follows:

SET-UP


- a. Apply GND to pin 12.
- b. Terminate all device outputs with a 10K Ω resistor to VCC.
- c. Set CE 1 to logic "0", and CE2 to logic "1" (TTL levels).
- d. Set Strobe to logic "1" level.

PROGRAM-VERIFY SEQUENCE

- Step 1 Raise VCC to VCCP, and address the word to be programmed by applying TTL "1" and "0" logic levels to the device address inputs.
- Step 2 After 10μ s delay, apply to FE1 (pin 13) a voltage source of +5.0 \pm 0.5V, with 10 mA sourcing current capability.

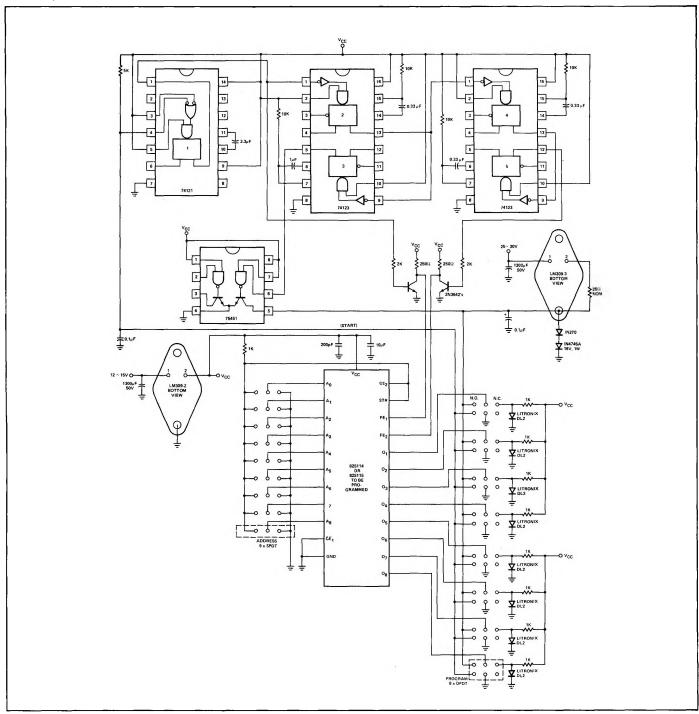
- Step 3 After 10µs delay, apply a voltage source of +17.0 ± 1.0V to the output to be programmed. The source must have a current limit of 200 mA. Program one output at the time.
- Step 4 After $10\mu s$ delay, raise FE2 (pin 11) from 0V to $+5.0 \pm 0.5 V$ for a period of 1ms, and then return to 0V. Pulse source must have a 10 mA sourcing current capability.
- Step 5 After 10µs delay, remove +17.0V supply from programmed output.
- Step 6 To verify programming, after $10\mu s$ delay, return FE1 to 0V. Raise V_{CC} to V_{CCH} = $+5.5 \pm .2V$. The programmed output should remain in the "1" state. Again, lower V_{CC} to V_{CCL} = $+4.5 \pm .2V$, and verify that the programmed output remains in the "1" state.
- Step 7 Raise VCC to VCCP, and repeat steps 2 through 6 to program other bits at the same address.
- Step 8 Repeat steps 1 through 7 to program all other address locations.

TYPICAL PROGRAMMING SEQUENCE

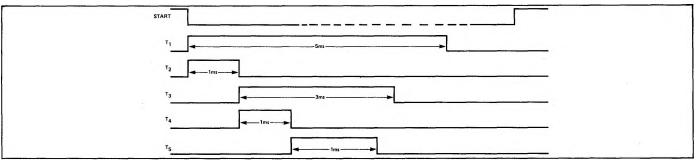
PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) T_A = +25°C

		TEST CONDITIONS	LIMITS			
	PARAMETER		MIN	TYP	MAX	UNIT
Power	Supply Voltage					
V _{CCP} ¹	To Program	$I_{CCP} = 200 \pm 25 \text{ mA}$ (Transient or steady state)	4.75	5.0	5.25	IV
V_{CCH}	Upper Verify Limit		5.3	5.5	5.7	v
V_{CCL}	Lower Verify Limit		4.3	4.5	4.7	v
V_S^3	Verify Threshold		0.9	1.0	1.1	V
1 _{CCP}	Programming Supply Current	$V_{CCP} = +5.0 \pm .25V$	175	200	225	mA
Input	Voltage					
VIL	Low Level Input Voltage		0	0.4	0.8	V
V _{IH}	High Level Input Voltage		2.4		5.5	V
Input	Current (FE ₁ & FE ₂ Only)					
I _{1L}	Low Level Input Current	$V_{IL} = +0.45V$			-100	μΑ
t _{IH}	High Level Input Current	$V_{IH} = +5.5V$		4-	10	mA
Input	Current (Except FE ₁ & FE ₂)				,	
1 _{fL}	Low Level Input Current	$V_{IL} = +0.45V$			-100	μΑ
I _{IH}	High Level Input Current	V _{IH} = +5.5V			25	μΑ
V _{OUT} ²	Output Programming Voltage	$I_{OUT} = 200 \pm 20 \text{ mA}$ (Transient or steady state)	16.0	17.0	18.0	V
I _{OUT}	Output Programming Current	V_{OUT} = +17 ± 1V	180	200	220	mA
T_{R}	Output Pulse Rise Time		10		50	μs
t _P	FE ₂ Programming Pulse Width		1		1.5	ms
t _D	Pulse Sequence Delay		10			μs
T _{PR}	Programming Time	$V_{CC} = V_{CCP}$	Ì		10	sec
T _{PS}	Programming Pause	$V_{CC} = 0V$	7			sec
T _{PR} ⁴ T _{PR} +T _{PS}	Programming Duty Cycle				60	%

NOTES


^{1.} Bypass $V_{\mbox{\footnotesize{CC}}}$ to GND with a 0.01 $\mu\mbox{\footnotesize{F}}$ capacitor to reduce voltage spikes.

^{2.} Care should be taken to insure the 17 ± 1V output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.


^{3.} V_S is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

^{4.} Continuous fusing for an unlimited time is also allowed, provided that a 60% duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period (V_{CC} = 0V) of 3 mS.

82S114/115 MANUAL PROGRAMMER

TIMING SEQUENCE

